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FOREWORD

This report was prepared by Grumman Aerospace Corporation in fulfillment of NASA

Contract NAS 8-32472, Space Fabrication Demonstration System (SFDS) Ground Demonstra-

tion Program, Paragraph 3 of the Statement of Work. The SFDS program successfully

developed and demonstrated a machine capable of automatically fabricating 1-m deep alumi-

num beams. This report documents the effort, L.e. analysis of the beam required and design,

fabrication, and verification of the Automatic Beam Builder (ABB).

l Major contributors to the successful NASA/Grumman team development effort and to
P

this final report included:

Erich E. Engler - NASA Contracting Officer Representative

Walter Muench - Grumman Program Manager

John Huber 1

Warren Marx Design & FabricationofABB

RichardRomaneck

Hank Morfln - Test & FlightDemonstrationProgram Plan

AI Weyhreter - QualityAssurance
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1 - INTRODUCTION & SUMMARY

1.1 INTRODUCTION

Large area, low densitystructuresare a key teclmologydevelopmentalrequirement

forthefuturepractlc_lutilizationofspace. Figure 1-1 illustratestypicalsystems t#-

qulrJngtheselargestructures.The lightweight1-rnbeam which can be automatically

fabricatedinspace hqs emerged as a viable,basicbuildingblockforconstructionofthese

largespace structures,i.e.,largerelectorantennas,microwave radiometerantennas,

radar astronomy telescopes,solarthermalpower systems, photovoltalcsolarpower systems,

microwave power transmissionantennas,and a varietyofotherunmanned applications.

/"_ 13.1 km _/

,
SOLAR POWER SATELLITE

1.75 km

SOLAR-THERIAL POWE RSAY

: m

i MICROWAVE POWER

i TRANSMISSION SYSTEM
RADIOMETER SOLAR MIRROR

0559-oo18 REFLECTOR

Fig.1.1 Typic4dL_r,,_S:)w:eStructures

1-1
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This report contains the results of analysis and tests conducted to define the basic 1-m

beam configuration required and the design, fabrication and verificaticn of tbe machine

required to automatically produce these beams.

1.2 SUMMARY

1.2.1 Structural Beam

The structural 1-m beam developed for the selected baseline vehicle, the Grumman

photovoltaic Satellite Solar Power System (SSPS), was designed for automatic fabrication

by the ground demonst_'ation beam builder. Three beams were built and structurally tested;

the first two were hand assembled, the secc.ld was built in the beam builder without any

manual operations. The planned tests simulated the middle bays of the 1-m x 40-m 26-bay

beam under compression load only; the design condition was combined bending a_d axial

load. All three beams were tested to, design data derived from the SSPS requirements.

Each test -',;ccimcn carried loads that exceeoed the ultimate design load of 1260 lb.

1.2.2 Automatic Beam Builder

Several design trades were conducted to define the forming, attachment and auto-

matic co_ltrol methods. The final Automatic Beam Builder (ABB) design selected is shown

in Fig. 1-2 and is comprised of the following subsystems:

• Bf:am cap member forming is accomplished by three seven-station roiling mills

which progressively form the longitudinal members of the beam from 162-mm

wide x 0, 4-ram thick fiat stock. The flat stock is fed into the roiling mills from

three reels. Each reel can hold 300 m of the flat aluminum stock and can be

easily replaced by another when depleted

• i?e_m cross braces are prefabricated in a conventional manner and stored in

magazines for dispensing at the proper time in the correct geometric position.

They are made of the same aluminum flat stock as the cap m_mbers. Each

_nagazine holds approximately 2G0 cross braces, enough to make 300 m of beam.

As was the case with the aluminum feed reels, these can also be replaced with

loaded magazines or alternately may be individually reloaded with prestaeked

bundles of 50 cr ss 0races

• Fastening of the cross braces to the three caps Ls accomplish,_4 by a single

mechanism at each fastening location. With the carriage rr_L,":,_ _qm holding a

cross brace in place on the beam cap member, the c' ,rap�:' _',; block moves into

place and clamps the cross brace to the beam cap member, at _hich time the

1-2
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"l Fig. 1-2 Automatic Beam Builder Ground Demonstration Article

carriage mechanism releases the cross brace and retracts to its rest position,

where it is ready to receive the next cross brace. Once the clamp/weld block

is in position clamping the cross brace to the beam cap member, the series

spotweld cycle begins with each pair of spotweld electrodes being activated

individually until six spotwelds are a2complished at each end of each cross

i brace. All vertical cross braces are dispensed, cl_mped and welded in place
; before the same fastening sequence takes place for the diagonal cross braces

• Once _he desired length of beam has been produced, beam cutoff is accomplished

by three guillotines which cut through the three beam cap members
s-

: • Automatic control is accomplished by means of a simple, commercial-type

[ computer which monitors all the operational functions of the ABB. Each

function, from rolling the proper length of beam cap member to form one

_ beam bay length, 1.5 m through cross brace dispersing and welding, length2

; ef beam produced and beam cutoff, is monitored and registered as completed

I_I,',PROD_JCIBII,I_'_" _' ;' '.,-;"
1-3 ORIGINAl, PAG!'; IS 1:
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before the next function is permitted to t3ke place. This monitoring is ac-

complished by encoders, tachometers_ photoelectric sensors, and limit

switches strategically placed throughout the machine.

The ABB achieved operational capability on May 3, 1978, and siime then has auto-

matically produced several hvndred meters of 1-m beam section of various bay lengths.

1-4
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'i ' _ 2 - BEAM DESIGN

.i , 2.1 INTRODUCTIONT

This section contains a description of the design studies, analyses, and tests of the

basic 1-m deep beam, which together with the development of the ground demonstration

ABB, demonstrate the feasibility of on-orbit fabrication of large space structures. The

design, construction and beam fabrication demonstration of the ABB is described in

Section 3 of this final report.

: Analytic studies presented in this report include structural criteria and requirements,

load and environmental data, temperature histories, structural math models, and dynamic

and structural analyses. Also included are tests and test results conducted to establish

verification of concepts.

2.1.1 Task Objectives & Scope

The objectives of this phase of the Space Fabrication Demonstration System (SFDS)

Program were to develop, design, and test an aluminum alloy structure which could be

automatically fabricated in orbit from ground preprocessed basic strip material. A

significant part of the preprocessing operations include the application of selected thermal

coatings and position locating holes used to null out relative cap misalignment errors after

fabrication of a bay. The primary manufacturing processes used to construct the basic

1-m x 40-m beam structure are: (1) roll forming of the three caps, (2) dispensing and

positioning of the prefabricated battens and diagonals, (3) resistance series spot welding

of braces to caps, and (4) shearing operation for beam cutoff. With the connection of a

proper end attachment structure at each end, this structure becomes a building block

for the construction of larger assemblies. The potential for beam builder modification

to incorporate material thickness and other changes, such as adaptation of tne beam

builder to process and fabricate composite beams, makes the concept usable for a wide

range of large space structures applications.

The space vehicle baselined to provide the design environments and requirements

for the development of the lightweight structure and ground demonstration beam builder

was the Satellite Solar Power System (SSPS) studied earlier at Grumrnan under various

funded and in-house programs. An additional requirement placed on the concept included

compatibility of beam and beam builder with Orbiter environments and geometric

,2_ 2-i
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constraints. Because it was designed and built as a low-cost ground demonstration

article, the beam bu lder was not optimized as a lightweight flight article.

Structural design data was obtained from the stationkeeping maneuvers at geo-

synchronous orbit in the SSPS mission. Neither on-orbit SSPS construction nor orbital

transfer was used to design the structure. Beam construction for the case where the

beam builder was supported in the Orbiter payload bay at low earth orbit (LEO) was

studied and is included.

Based on the design environments, a 1-m x 40-m beam was designed and hand lab-

: ricated from roll formed parts made by using final tooling from the beam builder. The

objective was to use this specimen in structural test to establish an acceptable baseline

load capability against which an automatically fabricated beam could be compared to

satisfy test requirements.

2.1.2 Summary

The structural member developed for the selected baseline vehicle, the SSPS, was

designed for automatic fabrication by the ground demonstration beam builder. Two beams

were built and structurally tested; the first was hand assembled, the second was built in

the beam builder without any manual operations. The planned tests simulated the four

middle bays of the 1-m x 40-m, 26-bay beam under compression load only; the design

condition was combined be,.ding and axial load. For obvious reasons, a test of a 40-m

member was not planned. Both beams were tested to design data derived from the SSPS

requirements. Each test specimen carried loads that exceeded the ultimate design load.

2.2 REQUIREMENTS & DATA

2.2.1 Satellite Solar Power System

Design and analytic studies conducted in developing a basic structural member to be

built in the automatic beam builder were based on the SSPS configuration (Fig. 2-1)

(Rcf.2-I).

Some of thepertinentcharacteristicsofSSPS includethefollowing:

• Size: 13.1kmx4.93 km

• Power: 5 GW

• Orbit: Geosynchronous

• Concentration Ratio: 2.0

'- 2-2
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• , • Operating Life: 30 yrs

• Structure Natural Frequency: 5.26 CPH bending

• Factor of Safety: 1.40.

Solar array blankets and the solar reflectors are biaxially pretenstoned in order to

attain membrane frequencies well above the satellite structural frequency. LJower is col-

lected in the lateral p,_wer transmission buses and transferred to the central mast power

bus. The centr_i mast also provides the support for the microwave antenna which beams

power to the ground rectenna in the form of microwave energy. As noted on Fig. 2-1,

the structure between the two 5.92 x 4.93 km solar arrays is constructed from dielectric

mate_'lal inasmuch as the continuously earth pointing microwave antenna "looks" through

the structural space frame; the dielectric material selected for this structure was S-glass.

The satellite primary structure consists of 20-m x 493-m beams in the X direction;

In the Y _,re_tion both 20-m x 493-m and 20-m x 246-m beams are used. The vertical and

diago_l members are also 20-m x 246-m beams; the entire system as shown forms a space

: f.,'amework with shear stiffness provided by preloaded tension cables. The entire satellite
!

• 2-3
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structure is 213.5-m deep. The main power transmission bus, the central mast, is

"structurally integrated with the remainder of the solar array and acts as part of the

primary structure. Figure 2-2 shows an isometric view of a 1479-m bay of the SSPS.

!

./_. 493 m

"-\l
'°'-- / >7,

M _ .

Fig. 2-2 Isometric View of One-Bay SSPS

The 20-m beams, as sllown in the figure, consist of three 1-m deep beams each of

which is 40-m long and is supported at the node points by 1-m battens. Shear stiffness is

provided by pretensioned crossed cables.

The loads, temperatures, and other environments used in this study to design the

Structure were taken from the SSPS operational modes only; no attempt was made to design

for the various environments experienced during construction, assembly of large modules,

and transport to operational orbits. However, analyses were conducted under several

related programs to evaluate the structural problems associated with construction and orbital

transfer. Initial review of the preliminary study results indicated those design conditions

were within the selected structure capability, although considerable additional work would

have been required to evaluate these areas in greater detail.

2.2.2 Orbiter Payload Bay

The beam was also designed to satisfy the requirements and environments experi-

enced during fabrication on orbit when the beam builder is mounted and operates in the

, payload bay. The requirements and environments were taken from NASA Report,

"Payload Accommodations Document," _'_. JSC 07700 Vol. XIV (Ref. 2-2).

2-4
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2.3 DESIGN CONDITIONS

2.3.1 SSPS Operations

2.3.1.1 Stationkeeping Maneuver - Stationkeeping manuever thruster loads required to

nullify the perturbations in orbit eccentricity and altitude drift caused primarily by solar

radiation pressure were evaluated and applied to the solar power satellite as represented

r in Fig. 2-.3. This loading condition resulted in the maximum axial compression load case

for the beam design.

ORBITAL ATTITUDE .,-_,7" _)_'_ r_._._

l
s

7

L

F

J I F ~ RCS THRUSTER

0559-005B Z
i

5 Fig.2-3 StationkeepingManeuver
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The stationkeepingloadlevelgiveninRef. 2-3 is913 N (205.3Ib)forthetotal

satellitedividedequallybetween thefoursatellitetips228 N (51.3Ib).The 228-N loadwas

increased by a dynamic magnification factor of 2 and a safety factor of 1.4; in addition, the

loadwas conservativelyincreasedby an additionalfactortoglve 1277 N (287Ib)at each

tip.This loadwas used intheNASTRAN model resultstoobtainmember loads.

2.3.1.2 SSPS StructuralMath Model - The SSPS solararray structurewas idealizedinto

a finite--element system in order to v_,_,,-_-'-:....st_:c " _.... ",_.,_m_c responses to external excit-ca jj_,A

ations; in this section the internal member loads caused by stationkeepi_g maneuvers were

calculated. The math model geometry and computer graphic representation of the model

are shown in Fig. 2-4 and 2-5, respectively. The 20-m deep members are the basic bar L
I

elements used in the model. The non-conducting members cross section areas used in

the model were based on earlier calculations; updated calculations since the math model i

was formulated indicate some area increases which, however, should not effect the results !

significantly. The conducting structure cross section areas were based on t.ower trans- I

mission requirements; this also applied to the central mast power conductor, the elements t
of which incorporate bending and torsional stiffness. Masses were lumped at the node f

points. The number of degrees of freedom (DOF) was reduced by assuming the antenna

at the array centerline and assuming symmetry and antisymmetry. The following list

summarizes the assumptions used in the finite-element model:

• Structure is symmetrical about antenna centerlines perpendicular and parallel

to mast

• Analysisuses onlyhalfstructure

• Antenna isincludedas rigidbody, rigidlyattachedtoflexiblemast, and llesat

centerofstructure

• Antenna has 6 DOF

• Mast isidealizedas consistingofmultiplebeams havingbendingand torsional

stiffness

• Mast moments of inertiasare based on sixcurrentelementsper polarity

• Allothersupportstructureisidealizedas axialloadedstruts

• Solararray elementslieinplaneofblankets

2
• Totalcross sectionarea of non--conductivestrutsis 0.572 in. (aluminum)and

1.91 in.2 (dielectric)

2--6
?
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Fig. 24 ,e_PS Math Model Geometry
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2 + 2• Total cross section area of conductive struts is 1.674 in. (Bus) and 3.35 in.

(- Bus)

w Tension-only wires replaced by single tension/compression struts cross section

area are 0. 0123 in. 2 (aluminum) and 0.0123 in. 2 (quartz)

• Model representing half-structure consists of 1127 members and 462 nodes

• Satellite weight is distributed as lumped masses at node points.

_v _,_:._P=:_:_.,-__:. ;._v_4r_.. 4_\,_ f z

/ ___._,;..._._,z_._, ..,-'-_,,,_, . -__,_._,. __,_:._-,_,_._,_p;_ -_1_,_;.. _.f_..._,, ._,--_.,.-_---_-"

_'-_ ". ::'-_3_ _,' ."_':,_ "_ _al_ "_.'_J_' --;e_,_'-

• _
• HALF STRUCTURE CONSISTS OF 1127 MEMBERS & 462 NODES

• SATELLITE WEIGHT DISTRIBUTED AS LUMPED MASSES AT NODE POINTS

• TENSION-ONLY WIRES REPLACED BY TENSION/COMPRESSION STRUTS

• PROPERTIES (FULL STRUCTURE)

- 18,06 X 10Bskg
(39.74 X 10" Ib)

XCG - 0

YCG = 0
Z_,,:. - 261.6 m (858.3 ft)

IxV'_ = 2,445 X 1013 kg-m2 11.803 X 1013 Ilug-ft21

I_, - 1.88_ X 1014 ko-m2 (1.389 X 1014 s!ug-ft2)

Iz = 2.118 X 1013 kg.m2 (1.5652 X 1014 glug-ft21
0559-007B

Fig.2-5 Math Model

2-8
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InternalMember Loads - The internalmember loadscalculatedusingthe

model are summarized inTable 2-1, and themember designationare shown in

The compreasion loads for the satellite upper surface structure are shown in

for the case where the control forces are applied to induce compression forces

surface, the individual members loads are lower inasmuch as there are a

number of members on the bottom surface. The _taximum loads 4942 N (1111 lb)

1 near the cutout for the microwave antenna. The dielectric structure was

at this time because it represents a smaller percentage of the overall

manufacturing in space problem. However, this type of structure should be addressed

Table 2-1 SSP$ Solar Array Upper Structure Member Load! from NASTRAN Model

(1277 N Ultimate at Each Tip)

BAY 1 BAY 2

MEMBER MEMBER

MEMBER .. LOAD MEMBER LOAD

MEMBER DESIGNATION (Ibf) (N) MEMBER DESIGNATION (Ibf) i (N)

1 42301 816 36;)9 12 42101 796 3541

2 42302 925 4114 13 42102 895 3981

3 42303 983 4376 14 42103 935 4159

4 42304 1111 4942 15 42104 1002 4457

5 42305 81 360 16 .,. 234 1041

6 42306 131 583 17 42106 333 1481

7 42307 81 360 18 42107 234 1041

8 42308 !1111 4942 19 42108 1002 4457

9 42309 983 4372 20 42109 935 4159

10 42310 925 4114 21 42110 895 3981

11 42311 816 3629 22 42111 798 3541

BAY 3 BAY 4

MEMBER MEMBER

MEMBER LOAD MEMBER LOAO
MEMBER DESIGNATION (Ibf) (N) MEMBER DESIGNATION (Ibf) (N)

23 41901 768 3416 34 41701 732 3256

24 41902 853 3794 35 41702 804 3576

25 4;903 875 3892 36 41703 808 3594

26 41904 900 4003 37 41704 $04 3576

27 41905 339 1508 38 41705 392 1744

28 41906 435 1935 39 41708 475 2113

29 41907 339 15/'_ 40 41707 392 1744

30 41908 900 .4003 41 41708 804 3576

31 41909 875 3592 42 41700 808 3E_4

32 41910 853 3794 43 41710 804 3576

33 41911 768 3416 44 41711 732 3256

0559.0085

RI,_PRODUCIBII,ITY 0£ "rite
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)- >. >- >. >.
0559.0098

Fig. 2-6 SSPS Solar Array Upper Structure NASTRAN Modal Output Data

The 4942-N load was used on the 20-m x 493-m beam tc calctdate the design load for

the 1-m element.

2. 'L 1.4 Solar Reflector Pretension Load - In order to prevent dynamic coupling of the

solar reflector membrane and the solar array structure, the reflector membrane (Fig.

2-7) is loaded biaxtally by a system of preloaded springs to increase its natural frequency.

Calculations of the satellite structural frequency show the first bending frequency is 5.26

CPH (Ref. 2-4), and it was assumed that the membrane frequency should be two to four

times higher. The frequency separaticn must be maintained throughout the thermal

excursions experienced at geosynchronous orbit as the satellite enters and leaves the

earth's shadow.

2-10
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0559-010B
f

Fill. 2-7 Biaxielly PretemiomKI Solar Reflectors & Solar Array {Typicol)

The heavier solar arrays wUl require a b:eater pretension load than the reflectors to

maintain frequency separation. These lo_ds can, however, be balanced by a series of con-

nocting cables between bays wLthout producing net loads on the supporting beams. The

reflector loads were therefore considered critical.

2.3.1. 4.1 Reflector Membrane Frequency - The natural frequency of a rectangular

membrane wRh a tev.sion force per unit length on the perimeter Ls gLven by:

RF_PRODUCII3Ir,rt',f__I,""I_i _Cfn = 0.6124 T ORIGINAL PAf;I,_ IS l',_,qtb

V_/here

mffin=l

a = 2b for given reflector configuration

a =493 re;b=246 m

2-11

1.q7Qn lnAg_no



T = tension force per unit dimension

-7 lb_sec 2p = mass per unit area = 1.321 x 10
3

in.
f = membrane natural frequency Hz

n
2

T = 33.04 fn

The frequency equation for the 2:1 rectangular Kapton membrane was used to obtain

the dat_L plotted in Fig. 2-8. If a factor of four times the array structural frequency is

assume_]. "he minimum reflector preload ts 175 x 10 -3 N/m (1 x 10 -3 lb/m.). This load

is modified in the foUowing section to take into consideration the thermal excursions

experienced on orbit.

100 --

t_
z
<

zto --

tu _
¢ u. SSPS$1"RUCTURAL

m

1 , I ; J
10-5 10 .4 10-3 10.2

0SSg-01Xe REFLECTOR MEMBP s.NCE PRELOAO. NIm X 175

Fig. 2-8 Solar Reflector Natural Frequency vtf_us I_rimettr Praload

; 2-12

1979021042-027



..... r . Ii I Illl I I I ........... _ .... • aim

_ 2.3. i. 4.2 Reflector Temperature History - The time ten,,_erah_re history curve (Fig. 2-9)

from Ref. 2-5 for the solar array is shown for the peak 72-min. eclipse period at geo-

_ synchronous orbit. The sateIlite is eclipsed daily during a 45-day period, twice each year

at the time of the vernal and autumnal equinoxes. The time spent in the earth's shadow

varies from nearly zero to a maximum of 72 rain. The data plotted in Fig. 2-9 shows the

very rapid tempe:ature decrease of the 1 rail Kapton reflector compared to the supporting

" aluminum structure. When exiting the earth's shadow, the reflector temperature will

.I, increase at a much greater rate than the supporting aluminum structure.

" Because the temperature variations and coefficients of thermal expansion for the

structure and Kapton result in appreciably large relative dimensional changes (Fig. 2-10),

the preload was modified to account for the thermal effect.

The relative dimensional change between the aluminum structure and the Kapton

reflector is given by:

A.g=aal _Tal_ +a k AT k .g

. - Where aal = 12.5 x 10-6/'F

" _ a k = 3.6 x 10-5/°F (average value for temperature range)

ATal = 185°F _ tempera:'-re change
during the eclipse

AT k = 370OF

The relative dimension change in the X-axis direction between sunlight and eclipse

is 2.7 m per edge; the springs, whlch must provide a minimum preload of 0. 175 N/m,

will increase the tension force depending on their spring rate. An initial evaluation

" " showed that a series of springs with rates of 1.15 N/m would provide an perimeter

tension force of 0.7 N/m (4 x 10.3 Ib/in. ); this load is applied to the beams together with

. _ axial forces due to the primary beuding loads.

_ _ 2.3.1. 5 Design Loads 1-m x 40-m Beam - The critical loads on the 1-m x 40-m beam

, are a function of a combination of loads and temperatures applied to the 20-m x 493-m '

. beam of which the 1-m beam is a basic element or cap. Figure 2-11 illustrates the external

, loading system; in addition the beam internal loads can be effected by initial manufacturing
7

:_ . imperfections such as bowing along the length as shown in the figure. During power gener-

ation at geosynchronous orbit, at which time the upper surface is sun oriented, the thermal

, gradients are in a direction to relieve the lateral beam deflections caused by the reflector

_ load on both the 1-.m and 20-m beams. During eclipses, the stationkeeping maneuver will

.. 2-13
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_ ECLIPSE AT GEO _ _ SUNLIGHT
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200 :}ALUMINUMC STRUCTURE
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100
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0 20 40 60 80"

0559,O12B TIME, MINUTES

Fig. 2-9 Average Tempermture of Major Members during Edipm, GEO
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not be programmed, thus eliminating the bending in the solar array caused by the maneuver.

"_ The maximum moment at the centerline of the 20-m x 493-m beam (assuming the beam is

_ continuous) is given by:

_,_ M max = ( aJ ± 2 Pk) cosec _ -1 P = 794 lb (3530 N) limit

2 W = 6.93 x 10-3 lb/in. (1.21 N/m) limit

" E_ L 4Co/L2 j2i, J u =-_- k = = 1.469 x 109 In. (3.73 x 107 m)
Co = b_ltial bow

. at center Mma x = 1. 099 x 105 ± 262 C°

_,--._ 493 m _-

_ ,-_ X

J " ALUMINUM
STRUCrURE

_ /SPRINGS

•_ "'" KAPTON REFLECTOR

- DEFLECTED CATENARY
POSITION CABLE

:_ . . Y REFLECTOR
0559-013B

Fig. 2-10 Solar Reflector Support System (Schematic)

. I 4om II
... _'_w,,-,____l_. _-____m_ ,-r. P

.. t t t t t t } t t t t t t t
I

_ ._ REPRODUCIBILITY OF' Ti l,:
P - 3530N (7941b1 LIMIT ORIGINAL PA(IP. IS PO')R,, 1.21 N/m 16.93 X 10.3 Ib/in.) LIMIT

, L - 493 m

• "__ FACTOR OF SAFETY 1.40 FOR ULTIMATE
0559-014B

Flg, 2-11 Design Loading Condition 20-m x 493-m Beam

5
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The cu,'ve of maximum moment versus CO is shown in Fig. 2-12; the moment used

from this curve to calculate the incremental load on the 1-m x 40-m beam wcs 1.74 x 104

N.m (1.54 x 105 in.-lb) ultimate at Co = 0.

I lllil-lllllll
t,$

2.0 °

O
I-

X, 1.0
.e

" Z
I-
Z
W

_E
0

0
i

II I I I I

; -1.0 -0.5 0 0.5 1.0 1.5

CO METERS

-1.0

2.0

0559-015B

Fig. 2-12 Maximum Moment ¥ersul CO for 20 m x 493 m (Continuous Beam)
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" _" The incremental load on the 1-m x 40-m beam caused by bending on the 20-m x 493-m

- beam is

o , P = 912 N (205 lb) ultimate

: The axial load due to the primary solar array bending is 1_47 N (370 lb) ultimate

" " (i.e., 1111/3). This f_rce combined with AP = 205 lb results in a total compression load

at each end of 2558 N (5'/5 lb) ultimate.1

Estimate of the maximum moment at the o,enterlme of the l-m x 40-m pin ended

beam (Fig. 2-J3_.

!

_ '
I

ls28N__ .__J_1828NLIMIT

.¢

i

w " 1.21 N/m LIMIT
0559-016B

" Fig. 2-13 Design Loading Condition for 1-m x 40-m Beam

The maximum moment at the centerline is given by

Mma x = 2405 :_462 C o

Where Co is the initial eccentricity at the beam centerltne.

This equation Is plotted in Fig. 2-14; an initial eccentricity of 0.5% (0. 2 m) selected

as a conservative initial imperfection for a 40-m long beam. The bending moment is

956 N.m (8460 ln.-lb). The ultimate cap loads on the l-m beam at the centerline are given

by:

: P = -575 :E223 = -415 lb (-1846 N)
• 3 +31 Ib (+138 N)

"t

. . -1846 N

' " _138N

,, . -t138 N
; 0559-017B

• _

.: o. 2-17
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Fig. 2-14 Maximum Moment versus Inltlal Deflection (l-m x 40-m Beam Pin Ended)

The critical beam column load is 2558 N (575 lb) compression with a 1.69 N/m (9,68 x

10 .3 lb/ln. ) lateral running load ultimate.

The critical cap load is 1846 N (416 lb) compression. In the derivation of these loads

used to design the basic beam, a conservative approach was undertaken in order to achieve

a design which had more than this extremely limited application.

' 2-18
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"" 2.3.2 Orbiter Payload Bay Operation

2.3.2.1 Modes &Frequencies 1-m Beam - A NASTRAN model (Ref. 6) was formulated to

* = obtain modes and frequencies of a nominal 40-m long beam mounted in the Shuttle and also

- - in the unconstrained state. Properties of the 1-m triangular beam and Shuttle mass prop-

o q erties are summarized in Table 2-2. The triangular beam was simulated as a _eries of

,, axial load carrying members. The fundamental frequency is 0.57 Hz for the Shuttle mount

, = and 3.6 Hz unconstrained (Table 2-3 and Fig. 2- 15). Plots of the modes shapes are also

given for typical cases. Figure 2-16 shows predicted variation in frequency with beam ,

• length using simple beam theory.
a e

• - Table2.2 Shuttle-BeamManData

: * " BEAM PROPERTIES

LENGTH 39 m (1535 in.)

WGT 52.9 kg (116.7 Ib)
a..

C.G. X 29.1 m (1146.7 in.)

" Y o.om (o.0in.)

. . Z 30.13 m (1186.53 in.)

CAP AREA 0.65 cm2 (0.1014 In.2)

BATTEN & DIAGONAL AREA 0.48 cm2 (0.0737 in.2)

MATERIAL ALUMINUM

SHUTTLE PROPERTIES

• WGT 96,717 kg (213,221 Ib)

C.G. X 28,7 m (1130.7 in.)

Y 0.02 m (0.8 in.)

Z 9.72 m (382.7 in.)

INERTIA IK)_ 1.22 X 106 kg m2 ,,,

Iyy 8.86 X 106 kg m2

" " Izz ' 9.24 X 106 kgm2

" _ SUPPORT ,

" _ NODES 1,2,3 X, Y, Z
!

. _ NODES 4,5,6 X, Y

0559.019B

" 2.3.2.2 ._Forced Response - 40-m Beam to Orbiter RCS System Thrust - The modal data

- - computed for the Orbiter supported 40-m beam (Fig. 2-17) was used to calculate the
/,

,, response of the beam (Ref. 2-7) to the RCS acceleration inputs given tn NASA "Payload

,_ccommodations Document," JSC 07700, Volume XIV. The primary tiCS angular accelera-qll ,,_-

tions are 1.2 deg/sec 2 roll and +1.4 deg/sec 2, -1.5 deg/sec 2 In pitch. The vernier RCSr /Dw

( .. 2 - 19
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Table 2-3 Vibration Modes (1-m x 4Gin Beam)

FRED GEN _ASS
(Hz) (Ib-sec_/In.) DESCRIPTION

MOUNTED IN SHUTTLE 0.570 0.124 1ST LATERAL BENDING(+X)
0.575 0.116 1ST LATERAL BENDING(+Y) "
3.5 0,080 2ND LATERAL BENDING(+X)
3.5 0.085 2rJD LATERAL BENDING(+Y)

UNCONSTRAINED(FREE-FREE) 3.8 0.083 1ST LATERAL BENDING(+X)
3.7 0.084 1ST LATERAL BENDING(+Y)
7.6 0.153 1STTORSION
9.3 0.088 2ND LATERAL BENDING(+X)

0559-020B

-.,.:I;iiI
t.i?, _,

- i:d

1STLATERAL 1ST LATERAL 2ND LATERAL 1STLATERAL 1STTORSION
BENDING0.57 Hz BENDING0.57 Hz BENDING3.5 Hz BENDING3.6 Hz 7.6 Hz
(+X) (+V)

ORBITERMOUNTED- CANTILEVER FREE-FREE
MODES MODES

0559-021B

' Fig. 2-15 Modes & Frequencies1-m x 40.m Beam
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0559-0228

Fig. 2-16 Fundamental Frequency var=usBum Langth

angular accelerations for the above cases are 0.04 and +0. 03, -0.02, respectively. The

acceleration inputs were applied in six selected modes varying from step inputs to double

phased pulses up to 4 sec. The response data included:

• Tip displacement

; , • Tip acceleration
;

t • Orbiter acceleration
i

• Load time histories of critical members.

Roll and pitch cases for the primary RCS were calculated for the selected input modes.)
Flexible modes were used for the roll condition; the peak ltmtt cap loads was, 672 N in

_ members 105 and 107. The peak limit diagonal load was • 307 N in members 104 and 106.

• - These loads were for the step input from 0 to 2.5 sec.

"" Typical tip displacement, tip accelera_Lon and orbiter acceleration curves are

" included (Fig. 2-18, 2-19, and 2-20). The rigid body positive pitch case was calculated

=, for a step input acceleration resulting in a peak cap load of -1272 N and a tip deflection of

2-21
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•. 0.18 m. The maximum compression loads in the beam caps for the Orbiter primary RCS

firing are lower _han the loads obtained for the SSPS stationkeeping maneuver and, there-

. . fore, are not a design case. However, to avoid control system coupling it is recommended

that only the vernier RCS thrusters be used if necessary during extended length beam

fabrication operations. The primary system could be used as a backup for lengths up to
4 t'

40 m.

0

-80 I L A | I I I i i I
0.8 _ 6 2.4 3._ 4 0

TIME. |ECOND$
0S59-024m

Fill. 2-18 Tip A_le_n versusTime

2.4 MATERIAL PROPERTIES

Aluminum alloys 2024-1'3, 2219-T6, and 6061-T6 (Table 2-4) were selected as

candidate materials for automatic beam builder fabrication of the l-m beam. Of

these alloys, 2024-T3 was selected for the beam material for Its slightl_ higher compres-

sion yield strength and also because it is easier to roll form than the 2219-T6 alloy. These

alloys all are resistance weldable and have relatively good mechanical property retention

up to 450 °K (350 _F). Bend radii of 10T were used for all forming operations on the

material.

2-23
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Fig. 2-19 Orbiter A_elerution versus Time

2.5 1-m x 40-m BEAM DESIGN DATA

2.5.1 Design Detail

Figure 2-21 shows the design configuration of the 1-m beam structure; end attach-

ments were not included as pert of this study, but a concept iS described in a later section.

The caps are roll formed tn the beam builder out of 0.041 cm (0. 016 in. ) 2024-T3 alumi-

num alloy. Battens and diagonals, w_.h have the same cross section, are ground roll

formed from the same material as the caps; after positloniag, these lmrts are attached to

the caps by three spotwelds per leg tn the automatic processLng operations of the beam

builder.

Diagonal members capable of supportL,_g compression loads were selected instead

of pretension cross cables in the early phases of beam builder studies. The rationale for

selection of a compression capable diagonal was based on avoiding potential problem areas

some of which included the following:

_. 2-24
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Fig. 2.20 Tip Deflection w rml Tim (Step 0 to 4 see)

• Do the cross cable and low stillness batten system have capability to provide

sufficient end fixity for a cap which possesses low torsional stiffness

characteristics ?

• What is the reliability of obtaining a structurally sound single point attachment

of a small diameter preloaded wire during beam I_uflder fabrication?

• Does loss of several cable attachments to induce lattice column failurecaps type

due to inadequate residual stiffness ?

• Beam torsional stiffness is markedly greater with stiff diagonal than with

t crcssed cables due to large area difference between the twu diagonal design

concepts.

Test data, which are discussed in later sections, show that the batten/diagorml

design enforces a node at the batten spacing such that a joint fixity coefficient equal to

4.0 is attained.

2-25
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Table2-4 CandidateMaterialPropertyData

2024-T3 2219-T6 6061-T6

• FTU k$_(M N/m 2) 64 (440) 54 (370) 42 (?90) ,

• FTy k$_(M N/m 2) 47 (320) 36 (250) 36 (250)

• FCy ks* (M N/m 2) 39 (270) 38 (260) 35 (240)
• E- k$_(G NJm2) 10.7 X 1n3 (74) 10.8 X 10 3 (74.5) 10.1 X 103 (69.6)

• p Ib/m. 3 (K kg/m3) 0 1P0 (2.77) 0 102 (2.82) 0.098 (2.71)

• (_m./in.fF X 10--6 @ 200°F 12.9 (23.22) 12.4 (22.32) 13 (23.4)
(m/mFC X 10"6 @93.4C)

• KBTU/(hr)(It 2)( F)/ft 80 74 r,

• C BTU/(Ib) (_F) @ _)OO'F 0 27 0.23 0.23

0559.027B

Figure 2-22 shows the detail dimensions of the cap and attachment between battens

and cap.

The beam unit weight without end attachments is 0.85 lb/ft. (1.26 kg/m).

2.5.2 Beam Section Properties

Beam and detail parts properties are defined in Fig. 2-23 and 2-24.

2.5,3 Torsional Stiffness (Non-Buckled State)

A NASTRAN model c, the 1-m beam with unbuckled members was used to calculate

the torsional stiffness of the structure. The 1 in.-lb (0. 113 N.m) torsion waa applied at

the center of the 40-m beam and reacted at each end (Fig. 2-25).

As previously noted the above data are for the unbuckled state for the 0.04-cm

(0.016-in.) thick members. Some test experience for compression testing has shown that

the onset of initial buckling in compression is at relatively low stress levels. The effect

of the types of loading, stress state, and geometry on torsional stiffness can be evab,ated

by test.

2.5.4 Static Load Analysis

A 13-bay finite-element mode ! , representing half of a 40-m column, has been

generated using COMAP-ASTRAL. All elements are modeled as beams and have the

section properties as presented in Fig. 2-26. These values represent the e. se for

members in the non-buckled condition. All of the eccentricities, etc., of the specimen

are incorporated.

/ 2-26
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_f CANDIDATEMATERIALS: 2219-T6
6061 -T6
202, T3

3 SPOTWELDS
PER FLANGE BATTEN OR
(TYP) DIAGONAL

0559-029B

Fig. 2-22 1-m Beam Cap to Batten Attachment (2024-T3 Aluminum Alloy)

A total of two statLc and one thermal load conditions were run. It Ls anticLpated that

these, either separately or in combination, cover all the possible loading conditions.

Table 2-5 gives results of deflections and loads at the critical locatLons for each

loading case.

2.5.5 Torsion at End Attachments

Torsion at end attachments caused by manufacturing mtsalignment of the 1-m x 40-m "

beam Lnthe X-Y plane is shown in Fig. 2-27.

2.5.6 Summary Design Loads _'
4

• Solar Power operating Condttton - Geosynchronous Orbit
w

- 1-m x 40-m loading system (Fig. 2-28)

- 2-28 - _
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++ lm =_ 10.658 X 10-4) 10.943) 2
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Y

• BENDING STIFFNESS

Ixx = lyy = 3.9 X 10-5m 4
El = 2.87 X 106 N.m 2

+ . • AXIAL STIFFNESS

EA = 14.6 X 106 N

• TORSIONAL STIFFNESS (SECTION NASTRAN MODEL ANALYSIS IN SUBSECTION 5.11

GK = 2.207 X 105 N.m 2
0559.030B

.. Fig. 2-23 Beam Cro, Section

- Critical compression cap load at midspan of 40-m beam due to axial compres-

sion, lateral load, eccentricity, and non-ltneartty effect on bending (Fig. 2-29)

l • Firing During - Payload Bay (Fig. 2-30)
RCS Fabrication Orbiter Low Earth Orbit

- Maximum capload caused by primary RCS thruster firL._ h_ pitch -1272 N limit.

! For vernier RCS firing maximum load is -25 N; these loads are not critical.

2.5.7 Thermal Analysis

. A thermal analyses was performed on the 1-m beam for a 400-kin (215-n rot), 28.5 •

inclination earth oriented orbit at the vernal equinox. Figure 2-31 describes the orientation

of the structure in the orbital plane. Early studies of various surface treatments showed

that the black anodize coating 1 rail thick, MIL A-8625, with an absorptance to emittance

_" ratio alE = 0.86/0.83, would provide the lowest temperature gradients for the conditions

2-29
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MEMBER SECTION PROPERTIES

CAP

X

0.041 cm Ixx = 2.422 cm 4
- " lyy = 3.25 cm4

O.4_ Y = 3.76 cm

=o

Y

BATTEN & DIAGONAL

X

cm_L_ AREA = 0.445 cm2

0.041

Ixx = 0.799 cm4

Ivy = 1.518 cm4

j Y = 2.72'_ _ =0

0559-031B

Fig. 2-24 Cap & Batten Cross Sections
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=1 ,w

" - d
20 m

* ", d = DISPLACEMENT AT EACH APEX
NORMAL TO RADIUS VECTOR

= 1.342756 X 10-4 in.
T = 0.0565 N-m = 3.411 X 10-6m

f-_.,

_,,"/ _ e = 5,86 X 10-4 DEG/in.-Ib (5.186 X 10-3 DEG/N.m)
FOR L = 20 m

1 X 787
GK = 7.69 X 10 7 Ib in,2

1.02 X 10-5 ,, 2.207 X 105 N.m2
0559.032B

Fig. 2-25 Torsional Stiffne.

]

13 BAYS

(19.5 m) _ *,

SECT PROPS:

CAPS BAT. & DIAG

Acm 2 0.654 0 475

Ixx cm4 2.84 O.tO

ivv 4 2.71 0.93

, -- Icm 4 3.2 X 10.4 2.3 X t0 "4
0559-0338

Fig. 2-26 1-m Beam Finite-Element Model

-
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Table 2-5 Summary of Static Finite-Element Model Analysis Results

J CONDITION I AXIAL LOAD

P-+I P-P '

J L = :'_ BAYS EACH 1.5 P - 2558 N ULTIMATEm,

• COLUMN SHORTENING 6.99 X 10-3 m

• MAXIMUM LOAD IN BATTEN 1.87 N

• MAXIMUM LOAD IN DIAGONAL 5.83 N

• LOAD PER CAP 854 N

• iNDUCED ROTATION AT EACH END OF BEAM 0.0127 RAD

CONDITION 2 REFLECTOR LATERAL LOAD

I I

P AT EACH BATTEN = 1.82 N

• LATERAL DEFLECTION AT CENTER 1.52 X 10 -2 m

• SLOPE AT BEAM ENDS 3.66 X 10 -3 RAD

• MAXIMUM LOAD IN BATTEN 14.23 N

• MAXIMUM LOAD IN DIAGONAL 22.51 N

• MAXIMUM LOAD IN CAP 264.2 N

CONDITION 3 TEMPERATURE DIFFERENTIAL Tu - T L ,, 30°F; 16.7°K

I I

• LATERAL DEFLECTION AT CENTER 0.079 m

_) SLOPE AT BEAM ENDS 2,15 X 10-2 RAD

• MAXIMUM LOAD IN BATTEN 2,4 N

• MAXIMUM LOAD IN DIAGONAL 5.43 N

• MAXIMUM LOAD IN CAP 3.46 N

0559-034B

analyzed. This coating can be ground processed on the strip stock and will not be effectet,

during roll forming in orbit. Other orbital orientations could have been chosen which

might have resulted in more severe thermal gradients. However, for the known missions

at the time of this study, this analysis represented a rational approach to the problem.

2-32
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_O' METERS

: _ = 6.93 X 10-3 X 1.4 = 9.702 X 10-3 LB/IN. (1.7 N/m)

" L = 40m

- - _o = INITIAL MANUFACTURING IMPERFECTION AT
T = END ATTACHMENT REACTION TORSION PER SUPPORT

, ,., I!? X

T = [ _ ¢O_IN 7r-cd X
= - O

, ,_ T = _ eo L/,
0559-035B

-, ; Fig. 2-27 End Torsion versus Manufacturing Eccentricity in X-Y Plane
(1-m x 40-m Bum)tt
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r 4ore
2558 N 2558 N

REFLECTOR PRELOAD uJ = 1.69 N/m ULT
0559-036B

Fig. 2-28 1-m Beam Loading Conditions

+138 N /
+138 N

0559.037B

Fig. 2-29 Critical Cap Compression Load

0559 038B

Fig. 2-30 Fabrication in Orbiter Bay

Figure 2-32 presents the temperature differences wtthLn a cap element and also the

weighted average cap temperature for the sun vector oriented at 180 ° to the beam. The

study was done for the sun angle rotated around the structure from 0° to 180"; the 180 °

position resulted Lnthe largest gradLents. Thermal conductLon and internal surface

. 2-34
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SOLAR VECTOR
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noff'
Ds$g.O3glB

Fig. 2.31 Bum Orbital Orien_ion

radiation were also included in the analysis, ErLrlier calculations had been carried out for

the 180" solar orientation condition and these cata are summarized in Fig, 2-33 (Ref. 2-8).

J The reason for including these earlier data at this point is that the gradients are higher than

those of Fig. 2-32; the data used in the thermal stress analysis shows the worst cap non-

; linear thermal gradient to be 50 "F (27.8 °K) compared to 49. t °F (27.3 °K).

A transient thermal analysis (Ret. 2-9) was performed on the 1-m beam to evaluate

the temperature differential which existc for the case where one cap occludes solar energy

from impinging on another cap. Because of the low thermal mass of the structure, the

shadowed member can experience a rapid cooldown thus increasing the thermal gradient
*

between caps. The results of this analysis are ilhstrated in Fig, 2-34, wherein one cap

can block another for as long as 6.1" rotation of the orbit or 95 sec of orbital time. The

maximum differential is 20.6 _K (37 °F). The use of lightening holes to permLt illumina-

tion of the occluded member could greatly relieve this type of condition if it had been

shown to be critical.

" • A preliminary evaluation of temperature distributions (Ref, 2-10) was carried out on

the SSPS at geosynchroaous orbit; the temperature differential in the upper and lower chords

- - of the 20-m beam was 31 "F (17.2 °K).

L 2-35
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SUN VECTOR

180 °

t AT " 49'1+F 127'3+K1

EARTH ,"T - 44 2"F (24 _11 T" = 99 7=F (311+K)
- 98.12"F (310+11

VELOCITY
VECTOR

AT - 49 I°F MAX TEMP DIFFERENCE IN TRIANGLE

ATAv ° 12 Er'F MAX TEMP OIFFERENCE BETWEEN TRIANGLES AREA WEIGHTED
0559 040B

Fig. 2-32 Beam Temperature Response

_11 91

M_NS93 TI'Se6"F 1306"11

/ \

TilI- 7E.§ *F ,_ EL - 1110" _E_i_B_77o_j95 9 211 - 78.EIF 129111"11
94 102 102 94

_TMA x - T I - Tit - 10.7 "F 18 0° K)

,_TMA x - 1I)2 - E2 - 60eF i27.8"K1
0559 041B

Fig. 2.33 Thermal Gradients it _ - 1800
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Fig. 2-34 Solar Blockage Geometry

2.5, 8 Ther_l Stresses

Thermally induced stresses in the beam caps were evaluated for the 180 ° sun

orientation angle considering two temperature differential effects. The first of these was

the non-linear temperature distribution across the cap cross section represented by the

temperature curve in Fig. 2-33, the other is the temperature di/ferential between the upper

cap at 110.9 °F (317 °K) and the average of the two lower caps at 98.9 "F (310.2 _). The

non-linear temperature gradient in the cross section was analyzed assuming (1) a 1.5-m

length cap with unrestrained ends and (2) fixed ends. The results of these analyses are

sho_n in Flg. 2-35 and 2-36. The analyses are based on non-buckled elements of the cap

cross section; the peak compression for the unrestrained c_se is 3.4 x 106 N/m 2 compared

to 20 x 106 N/m 2 for the fully restrained boundary condition. The iniLial buckling for the

fiat sides occurs at an approximate average stress of 9.4 x 105 N/m2; the thermally induced

stress for the fixed case requires re-estimation based on the redistribution caused by

: thermal buckling. It is assumed that the stress caused by the non-linear temperature is

more closely approximated by the free boundary condition. The estimated stress caused

by cap temperature differences is approximately 4.3 x 106 N/m2; this combh_ed with the

, local stress gives a total of 7.7 x 106 N/m 2 (1117 psi).

. . 2-37
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dt

A more accurate evaluation of thermal stresses induced in the very thin wail

structural elements can be assessed by testing a two- or three-bay beam segment in a

solar thermal vacuum test facility with proper instrumentation including thermocouples,

strain gages, and deflection gages. The effect of local buckling cause by thermal loads

can have significant effects on redistribution of member loads and on stfffnesse_

2.5.9 Deflection

Deflection of 1-m x 40-m beam due to thermal differential in caps is:

III

• " SUN /'_\

li I

• " 055g.o46B

RI_PRODUCI[_It.I['Y (J;:' 'L_{_]
Differential: £1T = TII - T I = 21 *C (37 °F} (_RIGINAL l'h_;t'_ IS P(}_)R

Beam length: 40 m (1575 in. )

a = (;. 94 x 10-6/'C (12.5 x 10-6/*F}
J

The temperature differentials and deflections (Fig. 2-37} are transitory inasmuch

as they occur because of solar blockage of Cap I by Cap II during orbital motion; the total

time of occlusion is approximately 1.6 rain. In cases where temperature differentials due

to solar blockage are a problem they may be alleviated by the us_ of lightening he'_

The other significant thermal deformation occurs during the satellite eclipse by the

earth's shadow. The temperature excursion is in the order of 115 "F. This temperature

change can result in a beam total maximum length change of approximately 0.055 m

depending where in LEO the member Is fabricated and integrated into the next assembly.

The small length change can be corrected for by the design of a length adjustable attach-

nmnt fitting at each end of the beam.

2. _ BEAM FAILURE MODES

• Tb? failure modes of a 1-m x 40-m beam analyzed in this section Include the

following:

. . , Cap section, 1.5 m long; critical segment is at center of 40-m beam where com-

pression load is due to combined bending and axial force on 40-m beam

• Diagonal brace

. _ • 40-m beam; load due 'to combined bending and axial load,

: 2-39
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Fig. 2-37 Deflection & Slope _rms TemlNreturo Differential
(1-m x 40-m B_m)

2.6.1 P_eam Cap

The open cap section shown LnFLg. 2-24, evolved from early in-house studtes on

trLangular cross section beal,m studied in _arious materials Lncludtng metallics and

composites. The design shown in the figure was finalized under study contract NAS8-_1876

which was initLated in February 1976. The sectLon is roll formed from 0.016-in. (0. Otl-cm)

2024-T3 bare aluminum alloy strip stock in the automatic beam b_tfider. The ultimate design

load is -t15 lb (-1846 N) (Fig. 2-29). Torsion-flexure of the thin ,,,_alled open cross secti'_rt

column supported at the battons is the primary failure mode based on analytLc and test

results and the degree of fixity, in bending and torsio_j provided at the bo, :.daries has a

2-40
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; significant effect on the load capability of the column. From data developed under this

program and presented below, lndicaticns are that the support provided by the vee-hat

section batten and diagonal induces a high level of end fixity in both torsion and bending; the

effective column length appears to be one-half the batten spacing. Very early studies

" " indicated that cross cable diagonal bracing and battens with very low torsional stiffness

_ would not provide ad_-_luate support for the open cap section for the same batten spacing.

The cable concept also presents quality assurance problems during automatic fabrication

-. in preventing loss of cable attgchment due to misalignment, etc.

" _.-. FaiJure load prediction was approximated by modification of the techniques given by

. _ Tlmoshenko and Gere, '_heory of Elastic Stability" and Bieich, "Buckling Strength of

. _ Metal Structures. " A method for an iterated solution was derived which accounted for

_ _ inca1 buckling and its impact in changing the section stiffnesses (Ref. 2-11).

The following critical loads were estimated: REPRODUCIBI!2'1'¥OF THE

• Torsion failure without buckling correction ORIGINAL PAGI,_ IS POOR

_ • Torsion-flexure failure without buckling correction

• Torsion-flexure failure with buckling correction.

_ The failure mo_e is predominantly torsion buckling of the column; there ls a significant

t - loss in strength caused by secttor: stiffness reduction induced by buckling of the elements.cap

• : _ The purpose of these tests -_as to verify the capability of the cap to carry the design

load a._ represented by beam bending and axial load; the critical section was at the center-

; line of the 40-m beam. The three compression tests of the beam specimens represent

conservative simulations of the actual loading condition; for obvious reasons it was not

feasible to conduct the full 40-m beam test in bending and compression. The tests, howe'ver,

also provide data for a compression-only lo,"d condition on the beam in addition to verifying

" cap columnar stability with actual boundary conditions represented by tbe battens. Following

" " " is the list of the tests:

_ • Two 22-[n. long cap specimens were tested tn compression; the specimens failed
(

- at 770 lb (3425 N); failure mode was predomLnately local crippling because each

. _ specimen included a small segment of batten aad diagonal. Test objective was

o _ to evaluate buckling across spotwelds, material 2024-T3 c'_d (Ref. 2-12)

.. • Tv'o 48-ln. long specimens were tested in compression machine. Specimens

. . were made of clad 2024-T3 and had slight dimensional difference from final

: configuration. Test was part of in-house study. Failure load was 515 lb

(2290 N) torsion-flexure mode (Ref. 2-13)

_ 2-41
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• Four 1.5-m caps tested in compresstcn machine; sections were roll formed

: 2024-T3 and represented final conftguratton. Failure load was 507 Ib (2255 N)

for the two good quality specimens. Two roll formed specimens with _itially

rippled flanges due to forming were also tested. Their average failure load was

493 lb (2193 N) (Ref. 2-14)

• 4.5-m, 3-bay, beam tested in compression, sections were brake formed and

beam hand assembled. Upper beam end was unrestrained in lateral directions

and torsion. Failure load was 1260 lb (5604 N) or 420 lb (1868 N) per cap.

Material clad 2024-T3 (Ref. 2-13)

• 6-m, 4-bay, beam tested in compresston, secttons were roll formed and beam

was hand assembled. Beam ends were restrained in torsLon. Failure load was

1507 lb (6703 N) or 502 It) (2234 N) per cap. M_tertal 2024-T3 (Ref. 2-15)

• 6-m, 4-bay, beam tested as above. The beam was built entirely by the automatic

beam builder; no manual operations were performed in fabrication. Several spot-

welds between batten and cap separated just below 1Lmtt load. In two such locatLons,

small "C" clamps were attached and test proceeded to failure. FaLling load was

1374 lb (6112 N) or 458 lb (2037 N) per cap. The failure was torsion buckling of

cap apparently initiated by separation of several spotwelds due to local buckling of

cap. Failure load was well above the cap ultimate design load of 1260 lb (5600 N) or

420 lb (1867 N) per caps (Ref. 2-15)

2.6.2 Diagonal Brace

Figure 2-38 presents the esttmated critical c0mpresston load versus column length

which was dertvcd from the torsion buckling methods given LnTLmoshenko and Gere and

Bleich. The curve is based on reduced stiffness properties caused by local cross sectional

buckling and the axial load applied at the section centroLd. The end fixity provided by the

boundary condtttons will require evaluation by test; it is assumed currently that the effective

length is 1.5 m.

2.6.3 40-m Beam

The design condition for the ._-m x 40-m beam is a combined axial compression end

load of 2558 N ultimate and a lateral dtstributcd load of 1,69 N/re.

The beam was analyzed for overall compression stability using a finite-element

model (Ref. 2-16); the influence of the simultaneously applied lateral loading was found to

have a negligible effect on the buckling load. Figure 2-39 shows the unloaded model and the

buckling modes for axtal load only aT_daxial load plus lateral load. The buckling load was

2-.42
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calculated to be 17485 N compared to an applied ultimate load of 2558 N. }_

Both this analysis and the results of the static finite-element analysis of the beam

charactezistics indicate an induced torsional deflection under axial load application caused

by lateral force components in the diagonals. The static analysis of subsection 5.4 shows

the induced rotation to be 0. 009 radian for a limit axial compression load of 1829 N. The

results of the static axial compression tests on the 6-m long beams show the measured

reaction component forces in the plane of the beam cross section induced by loads in the

diagonals to be 18 N {4 lb) for limit applied load. These three components produced an

external end torque of 17.6 N'm (156 in,-lb). The effect of the end angular rotation did not

appreciably reduce the failure load of the beam test Specimen (d) as shown In the figure

summarizing critical load versus effective length. Specimen (d) had an upper end condition

which was free to translate laterally and rotate about the beam major axis; no external

support provision was provided. Based upon the data and tests carried out In developing

the 1-m x 40-m beam within the conservative design envelop assumed for the SSPS missions,

the basic requirements have been satisfied.

2.6.4 Combined Thermal & Mechanical Loading Conditions

• 1-m beam In orbiter - The mechanical load caused by the vernier RCS thruster

firing is -25 N, the stress is -38 N/m 2 Subsection 2.5.6 Thermal stress for the$

180 ° sun angle is -7.7 x 106 N/m 2 (-1117 psi), Subsection 2.5.8. These stresses

when combIned are below allowable stresses based on test data

• 1-m beam SSPS mission -

; - Maximum mechanical loads

o Cap compression - 1846 N (415 lb), ultimate

o 1-m x 40-m Beam -2558 N axial, 1. 69 N/m lateral, ultimate

- Thermal

Thermal gradient within cap perimeter 13.6 °F (7.6 "K) for the 0° sun angle case.
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I
3 - SPACE FABRICATION DEMONSTRATION S_/STEM

The design, development and fabrication objectives thcoughout the program were to

provide at minimum cost a fully operational ground Space Fabrication Demonstration System

(SFDS) within the principal shuttle constraints, which would automatically produce the

previously described 1-m beam (Fig. 3-1). The following general guidelines were used to

=_ achieve these objectives:

• Maximum use of off-the-shelf commercial hardware

• Application of high safety factors

• Modular equipment design.

, _ Throughout the design and fabrication tasks, the primary approach has been to use

existing state-of-the-art proven hardware and commercial expertise to minimize the costs

and risks associated with constructing the beam builder.

. The safety factors employed for special mechanisms and equipment were approached

as in the design of ground operating equtpment with little regard toward weight optimization.

This was done to minimize analysts costs, expedtte construction of the ground demonstration
a -

equipment, and place maximum emphasis on the functional aspects of the system. The

_ modular design approach was employed for greater versatility in the system for future

structural truss member configurations or modification to the machine.
w

3.1 OVERALL CONFIGURATION CHARACTERISTICS

3.1.1 General Arrangement

. The demonstration machine (Fig. 1-2) has automatically manufactured the low-<le, 'ity

_ aluminum beam structures of the configuration discussed in Section 2. The general

arrangement layout for this equipment (Fig. 3-2) identifies the floor space, support

equipment, and power services used in the program. The beam builder equipment can be

broken into the following principal subsystems:

• Machine structure

• CAP member roll forming

,_ • Brace member storage dispensing

_.- • Beam cutoff
m_

3-1
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B. TYPICAL CAP CONFIGURATION C. TYPICAL BATTEN & BRACE CONFIGURATION
0559-055B

Fig.3-1 1-mBeamDesignConfiguration
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• Controls.

Each of these subsystems will be discussed in the subsequent subsections.
g _

m m

--_ WATER IN/OUT

. _ "(SEE NOTE)

SF DS

, (lOft x 14 ft)

:114 x 60 ' '

CPU L I POWER REQUIREMENTS

___ 1 INTERFACE BOX - 2 - 208V

i (24 x 31 34, 20 A SERVICES

*PDPSA 1-115V 1_ 16 A (CPU)

m 2 I -220 V 1_200 ASERVICE
& WATER • 1 .S GPM

3 ALL SERVICES TO HAVE

(18 x 24) SEPARATE SHUT-OFF &
ARE TO 6E FUSED

TELETYPE

eCPU HAS AN ISOLAT|ON
TRANSFORMER IN LINE

* ' 0559.056B

: " Fig.3-2 GroundDemonstrationFloorPlan& FacilityRequirements

_. 3.1.2 Operation

• " The machine produces a beam structure by performing the following basic sequence

- - of operations:

• " • Coiled aluminum strip stock is fed to the roll forming mill to be formed into three

- continuous cap members for the beam
f

" • The control system coordinates the speed and position of these members a_ they

: - ure projected from the foiling equipment to ensure overall beam straightness

:'. 3-3
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• Transverse and diagonal brace members are prefabricated on earth, stored in

magazines, and dispensed to the beam caps as required

• Resistance spotweld equipment Is used to attach the brace members to the caps •

• When the preprogrammed length of beam is achieved, a guUlottne shear mechanism

is acttvated to cutoff the three cap members.

3.1.3 Mass Distribution

The approximate weight distribution of these principal subsystems in the ground demon-

stration machine is illustrated in Fig. 3-3 with a detailed breakdown provided in Table 3-1.

3.1.4 Power Requirements

The estimated average power distribution for these principal subsystems in the ground

demonstration machine is illustrated in Fig. 3-4.

X / cOMPUTEr _ J

v
- AVG 2.2 KVA

0559.059B

0 Fig. 3-4 Ground Demonstration $yNem E_imetKI

Fig. 3-3 Ground Demonstration System Weight Distribution Average Power Requirements

3-4
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_m Table 3-1 SFDS Estimated Weight Breakdown by Subwztem

"• Ground Test Art0cle

_1(¢ Sub- Ck'oWmtl Unit Wt Total Wt x
System Component Number (Ib) Qty (Ib)

Roll Yoder M011 AD-6911-1 1800 3 5400

I_ Forming M,It BasePlate (Incl W,th Yoder) 2060 (512) 3
[)roveMotor (Control Sy$) 709 60 3 180
Gear Box (SummtamoCo.) HJ51A 3

" '_ Yoder M011DroveBrackets 2112 51 3 153
Bushings 2138 1 3 3

• • _ Raw Mater0al Spools 2085 211 3 633
Feed Spool Mechan0sms 2136-1 129 3 387

+ _ -3 70 3 210
: Encoder (Dynam0csResearch) 29-21-804-200 3 20

===_ Thru-Tranlm0tszon Detector 1874-1 2
(6996)

_lglxine Vert0calCann0ster 2100-1 254 3 762
OllpenuN" D0agonalCannister 2100-3 265 3 765

Sups Struct-Ollg Magazine 2131 103 3 309
" (1836)

Weld Vert0calClamp Assy 2051 14_ ...... 3 420
Pr_ Clamp-Aft O_ Brace 2103 83 3 249

Clamp-Fwd OoagBrace 2104 75 3 225
" '_ Carr0age.Bracahandhng 2102-1 39 6 234

-91 5 3 15
• - Transformer Mtg Brkts 2137 3 12 36

Transformers (ConrlK) T1671 240 6 1440
• TranslWeld Head Cables 85 9 77

(2696)

Trum Cutoff Upper Moveable Doe 2107 77 3 231
Cutoff/ Cutoff Stationary DIg 2108 9 3 27

• , SutNson Cutoff Lower Moveable Die 2109 53 3 159
Stmclure Cutoff Ally 2181 50

Dulgonels + Rlqd Struct
" * BOKBeam W_,Jdment 2062 858 3 2574

+
Box Beam r._tads 2071 8 3 24

•' _ Bulkhead 1 2063 1281 1 1281
8ulkhaKI 2 20_ 1568 I 1868

+ . Bulkhead 3 2067 1438 1 1438
Brackets 2068 3 6 18
Br.lckets 2072 47 6 283
Internal SuppOrt Struct 2076 744 1 744
Instals ,,on Hardware 2070 114
Weldbt_k Ins Supra 204_ 31 3 93
Base Frame 2077 1962 I 1962

+ • BaseFrame Brackets 2078 66 3 198
(10764)

- " Orbiter Fottongl
Ir,te_rflme Truss + End F0ttlngl

Power a, Computer 340
. . Cgntrohl Console

Rackls) 200
Weld Control Unit (Sclaky) • 150
Inver tars (Wild)
Jnve_tlrs(Controls)

" " Batter_es
C3bhn0 300

• " (I)90)

. Thermal Thermal Control System
+. +

For Instrumentation Hardwmre
• ' " " Inltrumt

. . Totals 23272

0559-0588
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3.2 MACHINE STRUCTURE

The ground demonstration machine structure is composed of three major assemblies:

• Base mounting stand

• External support structure

• Internal support structure.

3.2.1 Base Mounting Stand

The base mounting stand {Fig. 3-5) is a hot rolled steel weldment which is not actually

a functional part of the machine. The stand provides a practical mounting platform for the

external structure so the equLpment can be operated in the horizontal position.

3.2.2 External Support Structure

The external support structure (Fig. 3-6) is the principal equipment support frame and

consists of three major l-in. thick steel bulkheads. The bulkheads are attached by three

pairs of 10-in. deep channels, 20 in, apart, located at 120 ° intervals, The channels are on

a radius of approxinmtely 40 in. and extend continuously from the aft bulkhead to the forward

bulkhead through slots in the mid bulkhead, h_ the lower bay, the rolling mills are bolted to

a 7/8-in. steel base plate which is bolted to the inner flanges of the channels. A closure

plate welded to tile outer flanges of the channels in the bay supports the lower transformers

and the raw materials spools. Each roller base plate penetrates through the aft bulkhead

and supports its feed spool system.

_" 3-6
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Mounted to the mid-bulkhead are the vertical {batten) weld mechanism and the batten

transfer mechanism (carriage). Also mounted to this bulkhead are the vertical (batten)

z_mg_,ztne support fittings. Mounted on the forward bulkhead are the mobile 0ortions of the

guillotine and the aft diagonal weld mechanism, in addition to the upper ends of the diagonal

magazine and carriage support beams.

The channels in the upper bay (between the mid and forward bulkheads) support the

forward diagonal weld mechanisms, the upper transformers, and the lower ends of the

diagonal magazine the carriage support beams.

3.2.3 Internal Support Structure

The internal support structure (Fig. 3-7) extends from the aft to the forward bulk-

heads along thc SFDS centerline. This core structure weldment is mounted to the aft

bulkhead and extends through a cutou_ in and is cantilevered from the mid-bulkhead. In

the upper bay, it provides internal support for the weld subsystem anvils which also provide

a gu_.de for the formed caps. At the forward bulkhead, the internal support structure supports

the plate to which are mounted the stationary portions of the guillotines.

3.3 CAr- MEMBER ROLL FORMING SUBSYSTEM

The aluminum cap member roll forming subsystem (Fig. 3-8) consists of the following

principal components :

• Feed roiler and guides

• Roll form equipment.

3.3.1 Feed Roller & Guides

The spool storage assembly provides a capability to sture up to 1000 ft o[ 0. 016-in.

(0.4t-mm) thick aluminum flat stock. A spring loaded cam driven spool assembly permits

c,asy loading of the slit coils of aluminum strip stock onto the storage spool. Several guide

rollers are used to feed the material to the rolling mill strip guide table.

The guide table manufactured by the Yoder Company provides precise adjustment of

the strip stock materials entrance position into the rolling mill. Proper alignment of this

guide is critical to obtaining a properly formed cap configuration. Once the adjustment was

properly made, the configuration remained stable and only required readjustment if the

aluminum strip material width were changed.

3.3.2 Roll Form Tooling

The roll form tooling approach for the program was initially ev$ tuated at Grumman on

3-tl
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AFT BULKHEAD (REFI SPOOL STORAGE ASSY MID BULKHEAD REF _,

_.JL
 _  llL//il I/III I

i-_1]-ilr7-E'-FI--i-1-T---....
0559-064B !

Fig. 3-8 Cap Roll Furminl System

a production machine (Fig. 3-9 ) to e_tabltsh the feasibility of produch_.g a satisfactory cap

configuration and establish preliminary equipment requirements.

3.3.2.1 Roller Configuration - As a result of the initial roll forming tests of the cap mem-
m

bet, and a material change from 2219-T6 aluminum alloy t_ 2024-T3, the following roller

modifications were made:

• Springback allowance changed from the 10° to 2° to accommodate material change

• Corner radii changed fron_ 4t to 10t due to material change

• Roll stations changed from eight stations to seven stations at 9-1-1/4 in. centers to

comply with machine/shuttl, _,cargo bay configuration constraints.

The configuration of the rolls aria the number of stations required was established

after reviewing the initial roll form tests at Grumman with a die design specialist from the

Yoder Company. FoUow-ttp roll forming tests with the seven-station configuration

3-10
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. Fig 3-9 Initiel Evaluation on Production Equipment

P

(Fig. 3-10) weCe performed. This setup ts compatible to the length colistraints as defined

" in the configuration layout. Positive results were: seven-station configuration is acceptable,

"° i.e,, no bow, twist, nor flatness anomolies were apparentl and a good geometric eonfigur-

- ation was obtained. The seven-step roll forming process is shown in Fig. 3-11. These

•_ rests also illustrated that bending of the flange angle must be distribumd over five stations.

A minor wave condition noted in the return flange was addressed by modifying two rolling

• stations to redistribute the workload of station five.

.,- 3,3.2.2 Cap Configuration Produced - The final cap configuration was modified to permit

_ a modification the return flange of the cap (Fig. 3-12). The change was made as an aid

in minimizing a ripple being formed In the flange.

' The cap met'vial is prepared for the roll forming operation by being slit or, produc-

tion slitting equipment to a 6.360-in. (16,154-cm) flat pattern width and recoiled, A rectan-
m_

, gular index hole is then die punched into the strip at precisely o_.e bay intervals 59. 055-1n,

(1.5 m) (Fig. 3-13). This hole is used as a control point on the beam to assure proper

""_ synchronization of the three cap members. The actual control system is discussed in (

"" Subsection'3.7.

1979021042-0



Fig. 3-10 Seven-Station Roll Form Tests

FLOWERDIAGRAM

I

 ooo-W
.- Y /h-

\ / 66.8_
_l'/ 2.63 in.

PROGRESSIVEFORMATIONOF CAP CROSSSECTION
0559-067B

- Fig. 3-11 Seven-Station ProgressiveRoll Form 5teps

k
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3.3.3 Roll Form Equipment

3.3.3.1 Equ{pment - The three rolling mills used in the beam builder were built by the

Yoder Company. The "M" series equipment was selected for its roll drive gearing built ',

into the inboard housing to reduce machine size and provide good drive control conditions

(Fig.3-14).

MCROU SECTI_iTYPE __

G

E C

\,

A - DRIVE HOUSING ENCLOSES ALL GEARS

B - TAPERED ROLLER BEARINGS

C - OUTBOARO HOUSING, PERMITS CHANGING ROLLER1; & PITCH FOil DIFFERENT CROSS SECTION

O - ROLL SPINDLES. PERMIT¢; CHANGING ROLLERS FOR DIF( ERENT CHC_S SECTIONS

E - ROLL SHAFT NUTS, SPA .PNER TYPE

F - NEEDLE SEARINGS

G - MICROMETER SCREWS. SPINDLE ADJUSTMENT

H - TOGGLE MOUNT, FOR IDLER GEARS

I - HAROENED STEEL WOR_/I/HIGH STRENGTH SRONTE WOPM GEAR

J - COUPLING

K - SPUR GEARS

L - ROLLERS

0559.070B

Fig.3.14 Tyrol RollingMillCrouSection

The actual torque requirements to drive the rollings are as shown ,3 table 3-2. The

servo motor drive system and position control Is discussed in l:_ragraph 3,7.2.

Table3-1 RollingDrlveTonueValues

BREAKAWAY RUNNING
TORQUE" TORQUE"

MILL NO. (in.-Ib) (in.-Ib)

I (TOP) 140 120

2 (LEFT) 84 60

3 (RIGHT) 140 85

'*WITH MATERIAL

0559-o718
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3.3.3.2EquipmentAdjustments- As a resultoftherollformingperformedon theground

_- demonstration machine, the following roll adjustment settings were established to produce •
4

_'" the desired cap configuration (Table 3-3).

Table 3-3 Rolling Mill Roll Aojustment Settings

ADJUSTMENTLOCATION STATIONNO. MICROMETERSCREWSETTING"
1 2 3 4 5 6 7

•t _ MILL NO.401 INBOARD 5._JO 6.013 5.990 6.024 5.990 6.002 6.100

OUTBOARD 5.990 6.013 5.990 6.026 5_90 6.038 6.097

MILL NO.401A INBOARD 5.973 5.975 6.000 6.032 5.982 6.017 6.096

OUTBOARD 5_972 5.970 6.000 6.03_ 5_82 6.015 6.098

MILL NO.401B INBOARD 6.014 5.975 6.003 5_95 5.981 5_94 6.073

_ OUTBOARD 6,015 5_82 6.003 5_91 5.980 5.997 6.075

"SEE"G", FIG. 3-14

0559-072B

. , The final drive configuration was modified as shown in Fig, ,_-15 to eliminate localized

section compression between statton3 no. 3 and 4.

t

-- ,,.0559-073B
e .-

Fig..1-15 Typical Sectionof Modified Mill Drive

. ._ 3-15
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The drive train for the Yoder machine normally consists of in-line worm gears for

station. However, because of peculiarities related to the part shape and tool design, the

material attempted to drive faster through the first three mill stations than the last four.

In_,tially, the first three stations were disconnected (idled) so that the mater:al would be

kept in tension. This approach was successful for improving part quality. So that the

machine would regain its self threading feature, a new drive ratio was experimentally

determined. In the interest of schedule and economy, a chain and sprocket drive was

selected using this developed drive ratio for station no. 1 through 3. These first three

stations 8re now driven by station no. 4.

3.4 BRACE MEMBER STORAGE DISPENSING SUBSYSTEM

3.4.1 Brace Storage & Dispenser - Design Approach

The function of this subsystem is two-fold:

• Sto:-e the ground fabricated brace members

• Select a brace from the stored members and transport it into position on the caps.

In contrast to the continuous cap manufacturing approach discussed in the previous

subsection, the relatively shorter brace members were prefabricated in a conventional

production facility and stored in a magazine to be dispensed at the proper time. The

prefabrication and magazine storage approach was selected for the following reasons:

• Part geometry lends itself to a high stacking density

• Part length is short enough to be stored and handled in a practical manner

• Part configuration and quality can be readily checked prior to use in space

• Members can be stored in their proper orientation relative to the truss structure

minimizing the number of motions required for proper positioning

• Forming and cutoff machinery does not .have to be included in the space fabrica-

tion facility.

The specific design approach selected for use in the beam builder incorporates the

following principal features:

• Modular design

• Helix selector

• Separate brace transporter.

3.4.2 Equipment Design

The magazine design was determined after evaluating two approaches. The

initial approach incorporated both the brace transport mechanism and magazine into one

unit. A functional mockup of the unit was built (Fig. 3-16) and tested. The subsystem

:: 3-16
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!! '' operated in the following manner:

: .. • The brace feed spring presses the stack of braces against a main stop shelf

! (MSS)

: • To separate the first brace from the main stack of braces, a temporary stop

shelf (TSS) is moved inward so a thin selector finger on the front can separate

the first brace from the remainder while the main stop shelf is being retracted

. . • As the first brace is pushed away from the stack by the TSS, the MSS is brought

into position and continues pushing the brace away from the stack to the brace

° . transporter stop

• The transporter device rotates 90 ° to capture the edge of the brace at four points

and moves the brace to the c_p.

I ,
, f

0559-0758 "_pllnl,- '-,

Fig. 3-16 Magazine/DispensingMechanism Fixture

.... _i_E15 I'()OR
This approach was modified as a result of evaluation tests with the moekup and a

need for a more compact modular unit which could be removed from the basic machine.

The final design is sb_wn in Fig. 3-17, and 3-18. It utilizes a helix selection for dis-
I

' pensing braces. The system operates in the following manner:

i • The brace feed spring presses the stack of braces against the upper portion of

i four single-turn helixes

• The brace transporter grLpper is rotated 90 ° to act as a stop for the next brace to

be dispensed

• The helixes are rotated 360 ° with the leading edge of each helix acting as a

" selector which separates the first brace from the remainder of the stack by

about 3/8=in. to the surface of the brace transport gripper mechanLsm

3-17
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Fig, 3-18 Brace Transporter C-_rriage

3-18
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• The gripper fingers are closed on the brace capturing thebrace flange at four ,,oints

" • The transporter with the brace ts driven by a ball screw so the brace is in contact

_ with the cap members

-." • The brace is then clamped to the cap with a weld clamp mechanism described In

D_ Subsection 3.5

_ • The gripper fingers are retracted releasing the brace flange

• The gripper is rotated 90 ° so the mechanism will clear the brace and can be

-" retracted to Its park position.
8_

The first two approaches provided restricted reliability in brace selection because of

variations in the straightness and configuration of the thin 0.016-1-. thick aluminum alloy

" _ parts. The latter approach with 0. 063-in. thick crescent shaped spacers provided a

reliable gap at the selection points with minimal dependence on part configuration.

. 3.4.3 Fabrication Method

The actual brace members were fabricated using a productLon rolling mill with the

, roll forming sequence shown in Fig. 3-19. Actual part cutoff w_s accomplished with the

diagonal and vertical brace member shear cutoff dies.

o

J

i

0559 082B

Fig. 3"19 Brece Roll Forming Sequence

3.5 BRACE CLAMPUP & ATTACHMENT SUBSYSTEM _,_';_4A', _',d ,-'

3.5.I Design Approach

, This subsystem (Fig. 3-20) was designed and built to perform two primary functions:

, - • Clamp the brace members to the cap members with sufficLent force to offset weld

. electrode clamp forces

- • Resistance spotweld the brace members to the caps.

7 " 3-19
4
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These functions are accomplished through the integration of the following principal

devices: a mechanical scissor clamp mechanism, cam actuated weld _:lectrodcs, and a

resistance spotwelding system. After evaluating several alternatives, discussed later

in this subsection, the following approach was used:

$ Once the brace members have been transported from the magazine, brace

dispenser to the cap, a clamp mechanism is advanced to a fixed position

$ A scissor mechanism driven by a ball screw is used to apply the clamping force

through a pair of )olyurethane plastic blocks to the brace and cap. An internal

copper guide block prevents collapse of the cap member during clampup

• After the three vertical or diagonal brace members are clamped, a cant mechanism

(Fig. 3-21) is actuated to permit individual pairs of spring loaded weld electrodes to

be driven into the brace member

• A limit switch is used to coniirm the proper cam position and resulting pair of

electrodes permitted to be in contact with the brace. The confirmation signal is

• sent to the computer which directs the firing of the spotweld system.

+_: 3-20
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The one pair of electrodes in contact provide the only complete circuit (Fig. 3-22)

through the brace and cap, with the copper guide bar acting as a shunt from one

spot to the other

• As each pair of welds _re produced, the cam is cycled introducing the ,_ext pair

of electrodes into the circuit until all electrodes h_ve been fired

• The clamp mechanism scissor is opened and the entire mechanism retracted clear

of the cap so the next brae_ • c,qn be advanced into position.

Resistance spotwelding was selected as _he attachment technique on the ground

demonstration system for the following reasons:

• Process is a common commercially available approach to attaching thin gage

metal components

• Considerable experience has been accumulated in aerospace industry using this

process

• Process has a fast cycle time I_I':I)I_()I)UC!I_I_.__"_(_:' iii,L
(Idt,INAL'' "' " I)A(';': _': �>()()It

3-21
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0559.090B SHUNT BAR

Fig. 3.22 Welding Process S¢lw,matic

• Process does not have any obvious space environment deterrents, such as

material vapor LzatLon

• Electrodes are small and compatible with automated mechanisms.

3.5.2 Welding Equipment

The equLpment used was a Sciaky sLngle dLrect energy system with SCR contactors

wLthsix 220-v input 63 KVA transformers with an output rating of 4.5 v, 14,000 A. Six

63 KVA transformers were used instead of one 75 KVA unit to reduce the electrical losses

Lnthe power cables to the weld electrodes.

The six transformers were positLoned on the machine as closA as practicable to the

brace attachment points on the beam beLng produced. An alternate energT source was

consLdered in the LnitLal system evaluatLon. VaL'ious capacLtor discharge systems were

considered. In order to weld two spots in a serLes weld configuration, a capa..-itor dLs-

charge system would cost 4 to 10 tLmes the cost of the planned unit and the recycle tLme

would be 15 to 30 sec. This was consLdered too costly and too slow for the ground demon-

stratLon system.

Three types of resistance weldLng were considered: normal, Indirect, and sertes.

All three require applLcatLon of pressure for less than 1 sec prior to the dLscharge of

weldLng current. Normal re._Lstance weldLng uses electrodes on both sLdes of the two

: 3-22
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_ sheetsofaluminum. The electrodespress againsteach otherthroughtheweld. Indirect

t _3istance welding permits one of the electrodes to be at a distance from t'Le spot weld.

Both nor.'nal and indirect resistance welding produce a single spotweld frc,m one current

discharge between two electrodes. The selected approach is to use series resistance

welding, which produces two spotwelds using two electrodes and a single discharge of

welding current The two electrodes are the hot lead and ground of the same open circuit.

When they are properly separated and compress both thicknesses of aluminum (from the

outside against a rigid conducting block within a cap member), ,,_ost welding current flows

from one electrode through a brace and into a cap member (forming a spot between cap

member aria brace). This current tn_n flows through the conductL,_g block avd exits into

the cap member and brace u;_er the other electrode (forming a second spot), and completes

the closed circuit path by leaving the brace and entering the second electrode. The spots

are formed at the aluminum/aluminum interfaces rather than the copper/aluminum inter-

faced because contact resistance is much higher at the former.

As part of the Initial weld tests, both static and fatigue tests were run on sample

coupons for the 300-1b w_ld clamp conditions used in tne ground demonstrator. These

results are discuss0d in Section 4.

Ultrasonic welding wss considered as an alternate approach (eve "_tragraph 4.1.1_.

This system had the _dvantage of requiring less power, but, due to accessibility prcblems,

mult/.ple heads _ith v,_0fled anvils would t.: required. Such a change would increase :he

equipment cost sig" _ '_ '_ _ver that for resistance welding.

Tests were condae;_d to determine the anticipated time between cleaning or replace-

ment of electrodes. All testa _re conducted using series welding at a spring loaded

electrode force of 300-1b (1334 N). Weld time was 0.017 sec at a love: of _pproxirnately

10,000 A. Electrodes were RWMA Class I with a 3/16-in. d_meter x 4-in. spherical

radius face. The backup shunt _ RWMA Class 2. Over 200 firings were .nade before

the electrodes stuck to the work pieceu. The test was terminatA_d at this point and the

results considered acceptat le. Weld strength averaged 126 lb (560 N) with no welds below

the minimum required 75 lb. The electrodes could easily have been abrasively cleaned

and rinsed because pitting and alun,inum pickup were less than 0. 005-in. in depth. The

i backupbat showed no signsof pitt_n_o: excessivepickup.

3.5.2.1 Weld Pattern- During thepreliminaryae_ignoftheground demonstrationequip-

0 ment, a choice between a six-weld or eight-weld pattern was required to determine

final mechanism design. The four-weld pattern would require an extra movement

because four electrodes with their springs would not fit in the stiachment space required,

3-23
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and the pattern would have been attained with two firings of the ssme set of electrodes per

i joint. A pattern of six electrodes could be spaced so that a single firing position would ,

provide the necessary attachment patterr,. In order to check the structural integrity of the

six-spotweld configuration, six and eight spetwelded components _ere fabricated from 0.016-

in. thick. 2024-T3 clad material and tested. These tests are described in Section 4. Based

upon the test results, the sLx-spot, 1. J75-in. spacing weld configuration was selected.

3.6 BEAM CUTOFF

The output beam is cut to length using the truss cutoff mectlanism shown tn Fig.

3-23. This device is co_;_prised of a screw-driven guillotine and a lower die which

has both an internal support mandrel and a retractable die section. The truss cutoff

utilizes _ double shear approach to severing the beam cap member. A slit of 0. !TiJ-in.

- wide cap material is removed during the shearing operation; therefore, neither the

fabricated beam no, the fol -med c._p have to be displaced. The excess material is

captured in a cavity in the lower die. In addition to imparting no relative motion to the

cap and beam, the orincipal advantages of this approach are absence of extraneous

particles and a clean cut.
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I 3.7 CONTROLS

The control system for the Space Fabrication Demonstration System is responsible
for overall automatic control of beam fabrication (Fig. 3-24). As such, it drives each of

the three rolling mills in closely synchronized fashion to ensure that the three associated

•_, cap sections are formed at the same rate and have the same length. In addition, the

_ control system d'rects the sequence for the assembly/faetening cycle which consists of

" ASSEMBLY SUBSYSTEM

= ._ CAP !

ROLLING _

I

SUBSYSTEM I

L 2 . _

, •

3 j _ I-
uJ

I J :>

I ACTUATOR ]

.... I DRIVES & FEEDBACK

t I SIGNALSI

OPERATORS

CONTROLS _LI_"_
& _ I/O PORTS =" _

. _ POWER RUN TIME_._/_ j_ _
FAI L CONTROLt _ _'-_

MEMORY
, _ SOFTWARE

, POWER
SUPPLIES

0559-094B

• .. Fig. 3-24 Control Sy=tem Block Diagram

alternating stops of cap positioning, fastening, and ultimately cutoff. The heart of the

system is a Digital Equipment Corporation PDP-8A computer. The PDP-8A is a general

purpose single address, fixed word length, parallel transfer computer. The PDP-8A was

• _ chosen for its proven off-the-shelf reliability and large library of previously developed

" and debugged software. The computer subsystem includes a non-volatile core memory,

-, power fail-au _ restart capability, and a real-time clock.
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3.7.1 Rolling Mill Central

The cap positioning controls drive each rolling mill so that the caps are formed at

precisely the same rate and so the that rolled lengths are equal prior to fastening the

vertical and diagonal supports. It accomplishes this by sending out a synchronized serial

pulse train to each 6f three serve translators. It is known that there is a slippage between

rollers and cap melabers and that this slippage is not consistent. Therefore, a mechanism

is employed to determine this slippage on the fly; that is, while the caps are being formed.

The technique uses an encoder feedback device driven by the cap m_terial being fed through

the roller.

All calculations are done while the motors are in motion. There is no stop/start

mo_.ion involved. After the motion start of the beginning of cap formation, they do not

stop until they have formed the one bay length of section.

In addition to ensuring that the final position is reached by all three caps at the same

time, the controller makes forced corrections to bring the caps into synchronization as soon

as possible oy withholding pulses to one or two of the rolling mills. Thus, for a case when

the slippage factor of one or more rolling mills changed suddenly, the controller would try

to re-synchronize the caps quickly without simply re-scaling to ensure that the final position

were correct.

3.7.2 Controlling Bay Length

A check on the accuracy of the encoder measurement is also made on the fly. This

may be necessary due to slippage of the friction drive wheel used to couple the encoder to

the material. It also compensates for changes in the dimension of the encoder drive wheel.

The method used (as shown in Fig. 3-25) consists of putting slots in each of the caps spaced

one bay length apart. A light source and photo detector arrangement is used to determine

- when these slots pass the viewing station. Each time a slot pa,Jses a viewing station, the

computer reads the encoder associated with that rolling mill a,d compares the reading to

"! the one taken the last time a slot passed the viewing station for that mill.

The readings should differ by exactly 1.5 m (the distance between bays). If this

is not the case, the weight given to the encoder counts will be modified by the computer.

i Of course, limits are placed on the amounts that these and other factors are permitted to

I change. An excessive change in a factor is a sign of a system malfunction which must be

corrected. With this comrol technique, the length of a 10-bay beam (Fig. 3-26) was found
to be within =-0.03 in. (±0.8 mm).

l
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Fig, 3-26 Ten-BayBeam
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3.7.3 Fastening Cycle

Once the caps have been formed to the proper length, the computer directs the se-
k

quential operations necessary to insert and fasten the vertical and diagonal stiffeners. The

computer (CPU) will direct a device to turn on or off and wait for a confidence signal that

this action has occurred. When it has, it will direct the next sequence to be performed. To

save time, some operations can be performed in parallel. An example is in the motion of

the spotwelding electrodes, two can be moving up to position while the two that had been in

position are moving to the retracted position. Approximately 80 actuators and 90 confidence

signals are included in the control system.

3-'28
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i 4 - TESTING

Various tests were conducted to support design development trades and to verify the

i _ operation of the ABB and the structural integrity of the product (1-m deep beam) produced

by the ABB. In addition, inspections were conducted during the fabrication and assembly

of the ABB as part of our quality assurance program.

The following 9aragraphs discuss the components tests, the quality assurance

inspections, and the structural tests conducted during this program.

4.1 COMPONENT TESTS

4.1. l Ultrasonic Spotwelding

A brief summary of results obtained from initial tests of ultrasonic spotwelding bare

2024-T3 aluminum (0.016-in. thick) is presented. The following objectives were addressed:

• Mechanical strength of joints (lap shear and peel)

• Process reliability, maintainability, and accessibility

• Fabrication of sample tru:m joints.

Two welding machines were used for these tests:

• Branson 3000 W, Model 3301

• Sonobond, M-1200 Bench Welder.

Photographs of the ultrasonic welds produced by these machines are shown in Fig. 4-1.

Although these initial results were generally considered acceptable, the following major

problem areas would have to be fully addressed before final acceptance of the process is

possible:

• Tip and mandrel sticking occurred frequently (mostly tip)

• Excessive surface indentation (particularly on Sonobond welds)

• Limited accessibility in truss welding

: • High cost of equipment.

Other less serious problems that must also be considered include frictional heating

and effects of vibration on successive spots, aud the optimization of weld time dwell (the

Sonobond weld time of 1 sec is too long).

4-1
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In the case of the Branson machine, rectangular-shaped welds were produced with a

knurled welding tip and backup mandrel. For the Soaobond weld, the welding tip was not

knurled, but the mandrel was and the welds produced were essentially circular° The

:_. Bransor, welds were made in 0. 075 see at a power input of about 200 W-sees; the Sonobond

welds: were produced in about l sec at a power input of 550 W-sec. These schedules were

not considered to be optimized, nor were tip selections, but they were considered reason-

able for this evaluation.

= 4-2
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' -_ The followln_ analysis of the obtained lap shear data resulted:

- -_ Branson Sonobond

• No. of tests I0 I0 ,

. Load, Ib (range) 170-350 250-330

, Load, lb (average) 299 290.5

30- Load, lb (range) 129-469 211-370

, _ The peeltestsresultsshowed thatSonobond welds averaged26.8 Ib and theBranson

welds around 10 lb. In thecase of lapshears, about50_ of thewelds pullednuggetsfor

specimens producedby bothmachines. Inthecase ofthepeels,onlyone outof fivewas a
W w,

shear failure,theremainder pulledpartialnuggets.

i When welding truss corner joints, problems were experienced with act.essibllity for
e •

each machine. It became apparent that multiple heads would be required using gun-type

welding heads with modified anvils. This would increase the equipment cost significantly

' " over that for resistance welding.

4.1.2 Static & Fatigue Characteristics of Spotwelded 2024-T3 Aluminum Joints

As part of an effort to evaluate techniques for joining structural elements fabricated

in space to form a truss, resistance spotwelded 2024-T3 aluminum alloy (0. 016-in. thick)

was tested for static and fatigue properties. Test specimens, consisting of single lap

shear joints, were resistance spotwelded to each of four configuration shown in Fig. 4-2.

Welding was performed on a 100 kva welder using 300 lb per spot electrode pressure.

Single spo_ direct welding using one cycle of heat was employed to simulate the series

resistance welding concept proposed for space fabrication. Three samples of each con-

figuration (Fig. 4-2) were statlcallv tested. Results are shown in Table 4-1.

' Configuration "D" (four spots in-line) resulted in the highest total (700 lb) or a 175 lb

- per spot shear load carrying capacity and was therefore selected for fatigue testing.

Twenty-six additional samples were welded. Twelve specimens were tested in constant

amplitude tension-fatigue (R=0.05) in an unrestrained (free) manner and 12 restrained

between oiled Micarta to prevent end curling or lifting in the lap Joint area. The three

remaining spechnens were statically tested to determine the shear ultimate strength of

the lot. Test results are tabulated in Table 4-2 and plotted as an S-N curve in Fig. 4-3.

Fatigue testing in the unrestrained condition resulted in a predominant failure mode
m

consisting of spot pull-out, attributed to a tension component induced by sample curling

or lifting in the lap jo_t area. Fatigue endurance limit occurred for loads below 10_ of

the ultimate shear load. Restraining the fatigue specimen in the lap joint area prevented

4-3
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Fig. 4-2 Spotweld Evaluation Static & Fatigue Test Specimen Configuration
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Table4.1 Spotweld Evaluation: Static

ULTIMATE PALLING PALLING LOAD

SPEC NO. NO. OF SPOTS LOAD (Ib) PER SPOT (Ib) COMMENT

A-1 1 170 170

A.2 I 150 150

l A.3 1 19...J 1B...!1
170 AVG 170 AVG

B-1 3 467 1S6 CONSIDERABLE BENDING

B-2 3 479 159 EXTRACTED SPOTS AS

I "PLUGS"

e-3 3 47_._ f__
473 AVG 158 AVG

C-1 4 (2) 876 169 SLIGHT BENDING

'_'I' c-2 4IROWS) 6S2 f63
c.3 4(of2) 6sss 17.__1

671 AVG 168 AVG

D-1 4 (4) 715 179 SLIGHT BENDING
q _ SELECTED FOR PHASE It

i 0-2 4 (SPOTS) 675 tW
D-3 4 (IN LINE) 709 177

je.¢ i

055g-)O4B 700 AVG 175 AVG

" Table 4-2 Spotweld Evaluation: Fatigue Test Results

MAX. LOAD % STATIC TEST CYCLES TO
SPEC NO. (lib) ULTIMATE FAILURE MODE OF FAILURE

UNRESTRAINED JOINT

.. 1 350 55 6,000 SPOT

2 210 33 106,000 AL

, - 3 140 22 238,000 AL

4 175 27.3 ! 77,000 AL

5 280 44 31,000 SPOT

6 280 44 19,000 SPOT

* 7 245 38.3 65,000 SPOT

8 245 38.3 68,000 AL

9 227-112 35.8 100,000 SPOT

10 227-112 35.8 100,000 SPOT

_. 11 140 22 25b,000 AL

12 70 11 10_000,000 NO FAI LURE

12R 350 5B 8,000 SPOT

RESTRAINED JOINT

13 210 33 109,(X,O AL

14 140 22 483_i(X) AL

15 140 22 236,000 AL

,, 16 315 49.3 38,000 AL

17 315 49.3 2 _00 SPOT

, 18 210 33 106,000 AL

19 140 22 510,000 AL

_, , 20 105 18.4 2,560,000 AL

21 70 11 10,000,000 NO FAILURE

_ 21R 245 38.2 63,000 AL

22 175 27.3 280,000 AL

- 23 10B 16,4 8,345.000 AL

STATIC ULT LOAD (Ib) LOAD PER $POT (Ib)-4 SPOTS IN LINE

24 660 165

25 631 158

26 621 f57

AVG 639 160

0559 105B
i
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Fig. 4-3 Sl_eld Evaluation Fatigue Test Results

curling or lifting and resulted in a predominant failure mode consistin 8 of fatigue failure

through the aluminum, initiating at one of the end spotwelds. Fatigue run-out occurred

between 10 and 15_ of the shear ultimate load.

In conclusions spotwelds which are representative of those that would be made in

sp.qce (i.e., slngle spot direct welded) produced ultinmt_ shear tension strength_ of 700 lb

using four spots in-line. Fatl_m" run-out averages 10 t( 15% of shear _fltlnmte loadE which

is within the range of values obtaIned by other programs (e. g., Goodyear spotwelding

studies).

4.1.3 Six Spotweld Attachment Component Tests

The initial SFDS truss design utilized eight spotwelds per brace attachment as shown

in Fig. 4-4. A reduction from eight to six spotwelds yields the following advantages: 25%

reduction in power requirements, 100% increase in electrode life, and reduced time weld

cycle. To verify the integrity of the reduced quantity weld configuration, two alternate

attachments were selected (Fig. 4-5 and 4-6) and tested against the eight-weld baseline,

4.1.3.1 Procedure & Results - Three components (Fig. 4-4 through 4-6) were fabricated

from 0. 016-in. thick, 2024-T3 clad material and tested per the general arrangement

shown in Fig. 4-7. Each component w_s compression loaded 15 times up to 300-1b (limit

load) then to ultimate failure (Fig. 4-8). Ultimate failure results were as follows:

1979021042-094
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Metallographic examination of the configuration No. 2 diagonal brace attachment

welds (MP-AMPD-MO-77-133) indicated that buckling failure did not have a detrimental

effect on the integrity of the spotweld.

4.1.3.2 Conclusions - Based upon both the successful static compression tests and

metallographic examination, the SFDS should use configuration No. 2 for truss fabri- '

cation and realize the prev.iousty stated advantages.

4.2 QLALITY ASSURANCE

' 'l, e genera'. • ojective of quality control in this program was to assure the quality and

succes " o, the end product produced by the Space Fabrication Demonstration System. To

: achieve this goal, the design, construction, and testing of the beam builder was monitored

throughout the program.

4.2.1 Beam Builder

Individual components of the beam builder were inspected prior to assembly so as

to assure conformance to design drawings and specification requirements. These components

were selected because of theil critical dimensions and structural importance.

4.2.1.1 Box Beam Weldments, RDM 447-2082-1 - A total of 58 weldments on box beams

No. 1, 2, and 3 were magnetic particle inspected. No relevant indications were found on

box beams No. 2 and 3. One weld on box beam No. 1 exhibited lack of fusion and some

visual cluster porosity. This was considered acceptable for the ground test unit.

4.2.1, 2 Bulkhead Plate, RDM 447-2067,,.1 - The tolerance requirements for the align-

n ent holes were checked at the seller for each plate and found to within blueprint

requirement ( in. ). The greatest tolerance error found in the holes was only

0.003 in., accounting for the excellent alignment obtained during subsequent assembly.

4.2.1. ,3 Bulkhead Installation Tool, RDM 447-2083 - The installation tool was dimensional-

ly inspected for conformance to print requirements. The -15 and -13 bushings were within

tolerances as were the other major tolerances.

4.2.1. 4 Yoder Rolling Mill - Acceptance of the cap member roller mill was accomplished

by source inspection of the mill at the seller in Cleveland, Ohio. The acceptance was

based upon the satisfactory manufacture of the end product cap member by each of the

mills. The first seller inspection revealed the cap members manufactured and witnessed

by quality control were not within engineering drawing requirements. After readjusting

the mill, a second source inspection of the seller showed the cap manufacture was of high

4-1o -4
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. quality with respect to dimensional requirements and overall geometry. The cap from
om

Machine No. 1 had a slight negative bow of 0.062 in. in 8 ft which could be eliminated with

light hand pressure. All other bow conditions from both machines were less than 0.10 in.

_ and also could be elimmated with 1Lght hand pressure. Oil canning and flange waviness were ,

- minimal (less than 0.010 in. and infrequent. ) The breakaway and running torque for both

• machines were found to be within acceptable limits. Based on the two seller surveillance

. _ visits and other supporting data, the machines were found to be acceptable.

- - 4.2.1. 5 Beam Builder Alignment Movements - As the various sections of the beam builder

were assembled, print tolerances were verified to assure proper functioning of the com-

pleted structure. Some of the measurements verified by quality control are as follows :

4.2.1.5.1 Facility Structure:

$ Base pads were level to within 0. 005 in. and within 0. 030 in. with respect to the

floor

• Bulkhead No. 1 was perpendicular to the base within 0.005 in.

• Bulkhead No. 2 was level with respect to Bulkhead No. 1 within 0.001 in. and

parallel to Bulkhead No. 1 within 0. 005 in.

• Bulkhead No. 3 wa3 level with respect to Bulkhead No. 2 within 0.002 in. and

parallel to Bulkhead No. 2 within 0.005 in.

4.2.1.5.2 Rolling Mill - Alignments for machine pails on the box beam with respect to

; 1-in. reference holes were as follows:

• Box beam No. 1: within 0.004 in.

• Box beam No. 2: within 0.005 in.

• • Box beam No. 3: within 0.004 in.

_ Alignment of the machine groove in the rolling mill base plate with respect to the

, , box beam were as follo_ _:

" " • Box beam No, 1: within 0.003 in.

_ • Box beam No. 2: within 0.002 in.

_ • Box beam No. 3: within 0.004 in.

4.2.2 Beam

• , Because the pr_laction or manufacturing of a beam which would meet certain rigid

, _ dimensional and structural requirements was paramount to the success of the Space

4-11
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Fabrication Demonstration System, a major quality emphasis was placed on the end product

to meet these specifications. Consequently, a series of material receiving inspection and

, in-process tests were conducted on the beam materials and sections of the beam itself.

4.2.2, 1 Beam Material Receiving Inspection Tests - Coil Aluminum Sheet - The material

used for the cap was 2024-T3 aluminum purchased to QQA - 250/4. Table 4-3 shows the

results of tests conducted for several coils of aluminum sheet. They were all satisfactory.

Table 4-4 shows an actual chemical analysis taken from one of the rolls and establishes the

validity of the material chemistry.

2

Table4-3 MechanicalPropertiesof2024-T30.016-in.AluminumSheet

ELONGATION % ULTIMATE (psi) YIELD (psi)

ROLL NO. SPECIMEN NO. REQD 12.0 MIN REQO 64,000 MIN REQD 42,000 MIN

1A 15.5 66,600 44 ,300

1B 17.0 66,300 43,800

1C 15.5 66,600 44,100518657

2A 16.0 65,700 43 ,800

2B 16.0 66,100 43,100

2C 15.5 66,800 43,500

1 16.3 69,300 46,700

518662 2 17.0 69 ,800 46,500

3 17,5 69,000 46,800

4 15.9 69,400 46,700

1 16.3 69,100 •

518663 2 17.9 70o000 46 ,300

3 17.1 69,600 46,900

4 16.4 69,100 44,400

1 16 69,600 47,400

518664 2 15.5 69 ,800 47,400

3 16 70 ,300 48,000

4 15 70,300 48,000

"SPECIMEN SLIPPED IN FIXTURE

0559-112B

Table4-4 ActualChemicalAnalysisof 2024-T3
AluminumCoilSheetperQQA-250/4

% % %
ELEMENT MIN. MAX. ACTUAL

SILICON - 0.60 0.09

IRON - 0.50 0.28

COPPER 3.8 4.90 4.13

MANGANESE 0.30 0.90 0.05

MAGNESIUM 1.2 _..80 1.34

ZINC - 0.05 0.14

TITAN IUM - 0.05 0.03

VANADI UM - 0.05 0.015

ZIRCONIUM - 0.05 0.01

0559-113B
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A 4. 2. 2. 2 Beam Tests - In order to investigate the quality of the beam spotwelds,SDotweld

several welds taken randomly from a manufactured beam were metallurgically micro-

sectioned and examined. The weld quality was of commercial standards as required by

m_ specification. It was judged that the spotwelds were of sufficient quality to meet the test

" requirements of the beam.

4.2.2.3 Beam Dimensional Inspection:

, 4.2.2.3.1 6-m Hand Fabricated Beam:

• Cap - The dimensions of the caps were within drawing tolerances and did not

exhibit any flange waviness or oil canning in excess of 0. _)15 in. The bend radii
w I.

were found to be free of cracks

. • Brace Members - The dimensions for the height and flange measurements of the

braces selected were satisfactory, through the overall width and central angle

were slightly out of tolerance due to hand shearing of the ends

• Vertical Brace Spacing - The vertical brace spacing were slightly out of tolerance

due to the hand shearing of the braces previously mentioned

• Cap Member Spacing - The cap member spacing and cap member alignment were

within drawing tolerances.

4.2.2.3.2 6-m Machine Fabricated Beam:

• Cap - The cap member (Fig. 4-3) dimensions were found to meet engineering

structural requirements, though measurement of the two base angles was com-

plicated by the rounded configuration of the base flats; Table 4-5 shows five

angular measurements along the three cap members manufactured by the beam

builder

Table4-5 AngularMeamrementsof CapMemberManufactured
by BeamBuilder

ANGLE REQUIREMENT CAP A CAP B CAP C

A 1 60° ± 45' 61° 55' 60 e 15' 6G_ 30'
q .

A 2 60° _ 45' 60° 45' 59° 45' 61" 15°

A3 60° z 45' 60 ° 45' 60° 35 _ 60° 45'

_" " A4 60° ±45' 60 ° 20' 60° 25' 60° 30'

- - A5 60° t 45' 60 ° 50' 60e 30' 61°

. . 0559-114B
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• Brace Members - Brace width dimensions were improved due to the elimination

of the hand cutting operation used on the hand fabricated beam

• Vertical Brace Spacing - The vertical brace _:pacing improved on the machine

fabricated beam to w';thin 0.045 in. of print requirements

• Cap Member Spacing - The cap spacing dimenMons were good on the machine

fabricated beam wLth measurements varying to within 40.070 in. of print require-

ments
I
l

; • Length Measurements - Part of the beam builder acceptance criteria included

I the conformance of a 4-Bay Beam, a 10-Bay Beam, and three End Caps to the

i critical leng',h dimensLons required by the print. The results of these measure-

ments are li6ted in Table 4-6. All measurements were taken along the length of

the three caps for each beam and all were acceptable, see Fig. 4-9•

Table4-6 LengthDimensionsof Beams& Caps

ITEM REQO RESULTS
A S C

4-BAY BEAM 27' 30/32" 27' 29/32' 27' 29/32'

10-BAY BEAM 50' 24/16' 50' 23/16' 50' 23/16'

CAP MEMBERS 70' 23/32' 70' 22/32' 70' 22/32'

0559.115B

al a2 a3 t'4 a5

B,C

blC 1 b2c2 b3c 3 b4c4 bsc 5 _ .
0559-116B

Fig. 4-9 Cnp Member Dimension Locations "

4.3 STRUCTURAL TESTS

:i
l This subsection summarLzes the tests carried out to verify the 1-m x 40-m beam

I structural design concept. Various tests were conducted at different periods in the develop-
ment phase to resolve particular problem areas. Following Ls a summary of tests; furthe, r

details are pro_ :ded in the following sections and in the references.

: 4-14
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_: • Two 0.56-m (22-in.) cap specimens were compression tested in a universal

t testing machine. The objective of these tests was to verify the use of three

spotwelds per leg on the batten, and diagonal, to cap attachment. One specimen
had four spotwelds, the other three. Cap ends were potted and machined parallel.

Two batten segments about 0.3-m long were spotwelded to the cap; also one
diagonal segment about 0.3-m long was also spotwelded to only one side of the

T cap. The opposite ends of the battens and the diagonal were clamped. The
_b test purpose was to determine whether local buckling of the cap fiat sides would

-_ peel the spetwelding on the three-spot specimen compared to the four-spot

_, specimen. The results showed there was no spotweld failure and all specimens

failed at approximately the same load. The additional data obtained from this

test was that, because the specimen was so short and had lateral members

attached, the failure mode appears to be local compression crippling rather

than torsion thus providing additional data on the section characteristics.

" Failing load for the three-spotweld specimen was 3456 N (777 lb), average.

• Two 1.2-m cap specimens were tested in the universal test machine. The cap

section was an early smaller cross section of the later design and the nmterial

was 0. 041-cm clad 2024-T3. The failure loads were 2357 N (530 lb) and 2291 N

"" (515 lb).

¢ Four 1.5-m roll formed cap specimens were compression tested in a universal

" " test machine. The cross section was the final selected design with a thickness of

- - 0.041-cm bare aluminum alloy 2024-T3. The first two specimens failed at

_ 2246 N (505 lb) each; the difference between the two test specimens was a trans-

. _ ducer tenston force applied to the flanges of one specimen at mid-length. The

other had no transducers. The remaining set of two specimens failed at 2211 Nat

and 2166 N. These specimens were also roll formed but had appreciable wavi-
7"

ness in all the free ._dge flanges.

• Test of 1-m x 6-m (4-bay) beam hand assembled. A 1-m x 6-m (4-bay) beam was

tested under compression load to obtain the ultinmte strength of the cap/batten/

diagonal combination. The beam was hand assembled and spotwelded from roll

" formed parts made of bare 2024-T3 aluminum alloy. Test objective was to

" " establish a baseline for strength capability of machine made part. Failure load

T " was 6703 N, which is 21_ above ultimate design load.

• Test of 1-m x 6-m specimen fabricated by beam builder for comparison with above

" " test specimen; failure was at 6112 N, 10_ above ultimate design load.

4-15
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• Test of 1-m x 4.5-m beam which was hand fabricated from 2024-T3 alclad alu-

minum. Specimen was early design which was later modified.

4.3.1 Compression Test of 0.56-m (22-in.) Cap Specimens

Paragraph 4.1. 3 presents the results of the compression test program conducted on

three spectmens represented by Fig. 4-10. One of the test specimens incorporated eight

spGtweids per brace attachment to the cap; the other two used three spotwelds per brace.

The test objective was to determine whether local buckling in the cap flat sections would

peel the welds as the compression load increased. Brace ends were clamped in order to

induce local peel forces in the spotwelds. The three specimens were fabricated from

0. 040-cm 2024-T3 clad aluminum. Each load in each specimen was cycled 15 times between

zero and 1334 N, then to failure.

5*n

BATTEN

XXXl

SPO WELDS/ 1

{TYP)

ENOS OF
BATTENS &
DIAGONAL
CLAMPED

2,5 in _ SPECIMEN
E_OS POTTED

0559 ILTB

Fig.4-10 CompressionTestSpecimenComparisonFailureLoad
Six or EightSpo_elds parBrace
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m The results of the test are given in Paragraph 4.1.3.

, Based on the test results and metallographic examination of the welds, the design
W_

incorporated the six-spotweld configuration.

4.3.2 Compression Test of Two 1.22-m (48-in.) Cap Specimens

The first triangular cap element 1.22-m (48 in. ) long tested in the universal testing

machine on 18 November 1976 sustained 2357 N (530 lb) compression load before total failure
m_

in a combination of torsion bending buckling mode at about mid-span. The initial local

- buckling waves were observed at 1379 N (310 lb).
I m,

The second triangular cap element identical to the specimen above was also tested

in the universal testing machine and carried a 2291 N (515 lb) compression load before

° " total failure in a combined torsion/bending buckling mode at about 1/4 of its span.

The initial local buckling waves were observed at 1200 N (270 lb). The load was then

, . dropped to zero and the buckles disappeared.

4.3.3 Compression Test of 1.5-m (59-1n.) Cap SpecLmens

Two sets of compression tests on individual 1.5-m (0.016-in,) thick cap specimens

were run in universal testing machines. The first two specimen tests were carried out to

determine the effects of deflection measuring transducers located on the flanges at mid-

span; one specimen included transducers which applied 16 to 18 oz lateral forces to each

I flanges; the other specimen had no transducers attached.
t

Each specimen was roll formed with the ends molded into an epoxy compound and

. machined flat for loading in the Baldwin Universal Te_t Machine. Both specimens failed

at 2246 N (505 lb) (Fig. 4-11).

The second set of tests were carried out on two 1.5-m (0. 016-in. ) thick caps in a

Tinius Olsen Universal Test Machine to determine the effect of load capability of build-in

flange ripples caused during the roll forming process in the Yoder rolling mill. The

worst flange leg deviation from straightness was approximately 0.075 in. ; all flanges?

exhibited some degree of misaUgnment. As shown in the test log the specimens failed

at 2211 N (499 lb) and 2166 N (487 lb).

4.3.4 Test of 1-m x 6-m (4-Bay) Beam, Hand Assembled

7 A structural test of a 1-m x 6-m long specimen (four 1.5-m bays) was tested on

• May 5, 1978 under an axial compression load applied by an hydraulic cylinder and tension

rod interconnector loading fixtures at each end of the specimen. The test specimen

4-].7
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SPECIMENS 1 & 2 TEST SETUP SPECIMENS 3 & 4
BALDWIN UNIVERSAL TESTING MACHINE TINIUS OLSEN UNIVERSAL TESTING MACHINE

1 llr7.6 im _" CAST END

L| _ _L--.- TRANSDUCER WIRES

CAP ELEMENT

COMP. TEST OF SFDS CAP ELEMENT WITHOUT 3. COMP. TEST OF SFDS CAP ELEMENT NO. 3

X-DUCERS RUN TEST LOAD
RUN TEST LOAO NO. (Ib) REMARKS

NO, (Ib) REMARKS _'-- 0
1 5O 2 5O

2 100 3 100
3 200 4 200

4 250 5 250

5 300 6 310 LIMIT
6 350 7 50

7 400 8 350

P 425 9 400 425 Ib HEARD NOISE
9 450 10 430 ULT

10 475 11 450
11 500 r_)5 8UCKLEO, LOAD DROPPED 12 475

OFF, WOULD NOT HOLD 13 499 FAILED SPEC BUCKLED
ANYMORE.

4. COMP TEST OF SFDS CAP ELEMENT NO. 4 •

RUN TEST LOAD
COMP. TEST OF SFOS CAP ELEMENT WITH NO. (Ib) REMARKS

X-DUCERS I 0

RUN TEST LOAD 2 50

NO. (Ib) REMARKS 3 100

1 50 4 200
2 100 B 250

3 200 6 310 LIMIT

4 250 7 350
S 300 8 4C.0

6 350 9 430 ULT

7 400 10 450 451 Ib HEARD NOISE
8 425 11 475 463 Ib HEARO NOISE

9 450 12 487 FAILED SPEC BUCKLED
10 475

11 500 505 BUCKLED, UNLOADED AVG BUCKLING LOAD - 499 + 487 ,. 493
: 2 525 2

13 550 % DEVIATION 806 - d93 12 = -2.37%
505

0559.118B

Fig. 4-11 Compre,ion Tern of SFDS Cap Elements
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- - represented the four bays at the center section of the SSPS 40--m beam for which the design

load is combined bending and a. :ial load; the maximum compression cap load is 1846 N

. . (415 lb) ultimate and the two tension cap loads are +138 N each. Because it was not feasible

to test the full 40-m specimen, the test simulation (Fig. 4-12) was designed to apply the

1927 N compression load equally to each cap for a total beam load of 5782 N (1300 lb)

ultimate. This assumption is obviously conservative.

4
UPPER i

._FIXTURE !

BAYNO. 1 I

|

BAY NO.2 I

--V-"

BAYNO, 3 I

'r _ HYDRAULIC
_"CVL,NOER

\tq

8AY__ No.,
--_LOWE.

ossg-IIgB FIXTURE

Fig. 4-12 6-m Comprv.lop TeAt Specimen
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The structure fai ,d at v total load of 6703 N (1507 lb); the failure mode was cap

torsion/flexure instability in Bay III with an average load per cap of 2233 N (502 Ib) coro-
t

pression,

Figure 4-12 illustrates the test specimen and the load application technique including

the end fixtures and the three instrumented links installed at the upper fixture to measure

induced horizontel loads for a pure compression condition. In addition t':e links simulate

the loads carried in the torsion carrying end attachment for the ends of the basic 40-m

beam for the design case of 2558 N (575 Ib) total end force; this torsion was estimated

from the measured test data at an applied end load of 2558 N. Cap ends were potted with

approxlnmtely 3 in. of HYCEL compound and machined fiat to preclude local cap crushing

during loading. Typical instrumentation, both str in and deflection gages, were included

and locations are given in Fig. 4-13.

In order to keep instrumentation costs within acceptable limits, the total number of

installed strain gages was 154 and deflection gages, 67; their distribution is given in

Table 4-7.

I

© ®

CAP DIAOO_ALI|ATTFIq

- 05_0 _20U ETNAIN GAGES

FiQ, 4-13 TypicW .,Itrumcml_ltton
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,,, I,,

Table 4-7 Test Specimen Instrumentation Sheet 1 of 2)

NO. OF GAGFS NO. OF TOTAL NO.
ELEM_.NT BAY STATIONS IN BAY PEH MEMBER MEMBERS OF GAGES

1 2 12 3 72

CAPS 2 1 6 2 12

AXIAL 3 1 4 1 4
GAGES

4 1 4 1 4

SUBTOTAL 92

DIAGONAL5

-- 1 1 12 2 24

2 1 2 1 2

AXIAL 3 1 2 1 2

- GAGES 4 ....

SUBTOTAL 2S

BATTENS 1/2 1
, . AXIAL 2/3 ' 1 8 2 16

GAGES 3/4 I

SUBTOTAL 16

_ SUBTOTAL 136

SAY i GAGES - JOINT 1._.8
TOTAL GAGES 154

|_. c_,..._ _ ,A_.
_ JOIN"

J. TRIAX,AL,,ER_AP _\\ ,S_----_,

I CAPS 6
TOTAL GAGES _ _ D,AG_.NAL

I
Table 4.7 Ten Specimen Instrumentation (Sheet 2 of 21

I NUMBER & LOCATION OF DEFLECTION GAGE_
LOCATION N0.__.OF GAGES

UPPER FIXTURE 7

I BAY 1, TWO STATIONS 2 X 18

BAY 2, ONE STATION (MID) 18

BAY 3, ONE STATION, ONE CAP CNLY 6

" TOTAL 117
0$Se.121B

I-
[
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hand-assembled truss was sul=jected to a compressive load in accordance with

appearing on Table 4-8. The load _ts applied incrementally up to 110% of

ultimate load. Instrumentation readings were recorded at each load level. During

from 110_/_to 120%, the truss failed as a result of buckling of the No. 1 cap

The Iced link indicated a load of 6503 N 11462 lb) at failure. Adding the fixture

of 200 N (45 lb) to this value glves a failing load of 6703 N (1507 lb) or .: 16%

ultimate based on an ultimate test load of 5782 N 11300 lb) There were no

any sl_tweld failures prior to buckling of the cap.

Table 441 Test Log - Manually Ammbled Beam

TEST LOAD

RUN NO. % BASE (Ib) REMARKS PHOTO NO,

1 0 LOAD LINK m,JACK DISCONNECTED (psi) X

2 10 85 3O

3 20 215 110

4 30 345 180

5 40 475 240 X

iS 50 605 305

7 60 735 370 X

8 71 885 445 (LIMIT LOAD) X

9 2 30 LOAD LINK & JACK CONNECTED (psi) X

10 20 215 110
i

11 40 475 ._40

12 60 735 370

13 71 885 445 (LIMIT LOAD) X

14 80 995 550 X

15 90 1125 566 X

18 100 1258 830 (ULTIMATE LOAD) X

17 110 1385 (_6 X

18 120 1515 760 x

19 !30 1645 825 X
,=.,

20 140 1775 890 X

21 150 1905 958 X

0% IPOST FAILURE) X

0559-1221B

Review of the displacement gage data indicates that the hanrl-assembled truss

0.38-in.._minally at ultimate load. The maximum lateral displacement

load was 1.35 in. on the cap that subsequenqy failed. Lateral displacements

generally small up to limit load.

Review of the strain gage data indicates that local buc' ling ¢{ _,_ _o. 1 is apparent

2¢)%. Buckling in cap No. 2 is evident at 50% and in cap _v. 3 :_t 60%. Lc.:._
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in the one diagonal instrumented was low up to 90% of ultimate load. Changes in batten

loads became significaat at 60%. The maximum strain the lateral restraint at ultimate

I load was 179 # in./in.

I Measured data are shown in Ref. 2-16, Section 2; these include the strains, stresses_ and deflections of all instrumentation for limit and ultimate loads. Also included are data

measurements versus percent of applied load for typical p,. rots on the structure. Figures

= I 4-14 and 4-15 show the plots of measured stresses versus developed length of the cap

- _ss section in bay No. 1 for 1300 lb and limit loads, respectively. While the curves

_ are drawn connecting points across the corner locations, these extrapolations are only for

h

? 1

; s

0: , |

•_ _'_ e_. ERAGE ULTIMAT
. STRESS FOR TOTAL f

.,. -,o .,.. I 1 "I /u

" e

• '_ 40 /- "_ . LOCALCO,_N_R
[ _ STReSSeSA_

" • a " _ _ t THAN SHOWN

0559-123B

Fig.4-14 CapStressesBayNo.1versusDevelopedFlatPatternofCapat1300Pounds
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10
STRESS IN CORNER
AREAS ARE HIGHER
THAN SHOWN

I
o

0 ! I ! } ! i ! |
Lu 1 2 3 I 4 5 6
rr

DEVELOPED LENGTH. INCHES
I

"" I

I
-10 d CAP NO 3

I
0b_9-124B

Fig.4-15 CapStressesBayNo. 1 versusDevelopedFlatPatternof Capat930 Pound=

"dentification because the local corner stresses are much higher, particularly on the center-

line. The curve at ultimate indicates a high degree of torsional strain as do the deflection

data. Figures 4-16 and 4-17 show similar data for the diagonals in bay No. 1. The data

for the battens between bay No. 1 and bay No. 2 are given in Fig. 4-18.

The average ultimate stress for the cap members is -2.87 x 107 N/m 2 (-4166 psi);

this figure does not represent the peak stress levels which are higher than those measured "

because the local buckling of the flat sides reduces the effective area appreciably. The

peak compression stress measured at point d of cap No. 3 is -13.4 x 107 N/m 2 (-19500 psi), _ !

Fig. 4-14. Figure 4-15 _.hows the stresses at 4130 N (930 lb) applied load. -T
f

Loads data in the diagonal members in bay No. 1 were estimated for the externally - '

applied load conditions on the 6-m beam at 4130 N (930 Ib) and at 5782 N (1300 lb). The

diagonal menmer load is 64.9 N (14.6 lb) at limit and 98 N (22 lb) ultimate compression.

S_resses in the diagonals and battens are shown in Fig. 4-16, 4-17, and 4-18.

Because the horizontal component in the diagonal is related to the forces measured _l

by the horizontal load links attached to the upper fixture, a comparison was made between

the load link forces and the component of diagonal forces. The load values based on the -_-I
link strains show some difference between each link; however, when the three loads are

4-24 t
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4 _ _r, .... "_

__ , / \ '
d

x /_<o J _ J I i

/ 1/ \ __ ,
l NO2 _ _ / I

/ b I I

.
f

-3

a f

o_44 125B

Fig. 4-16 Streues in Diagonals in Bay No. 1 at Limit Load , ,
0559-126B

Fig. 4-17 Stres_s in Diagonal in Bay No. 1 at Ultimate Load

averaged the horizontal components are 34.7 N (7.8 lb) limit and 70 N (15.7 lb) ultimate.

The horizontal components for the upper bay diagonals give 40 N (9 lb) limit and 60 N

(13.4 lb) ultimate.

In order to estimate the induced end torsion caused by axial compression on the 40-m

beam, the horizontal components at the beam end are reduced by ratio of the actual 40-m

beam end load of 2558 N (575 lb) to the test load of 5782 N (1300 lb) assuming linearity.

F

\

. . F= 60 1153_0)- 26.5 N 15.96Ib) ULTIMATEOR 17.7N 14Ib) LIMIT

,o .

• .. 4-25
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EXTRAPOLATED

14 _ k
1 2 ULTIMATE

i ° / - '-=-" "

LIMIT

-4 -- . .

"8

I
-12 -

b c

0_44. ] 27B LO('.ATIONS

Fig. 4-18 $trelles in Battens venus Developed Flat Pattern at Bottom of Bay No. 1

The inducedend torsionis 17.5 N m (155in.-Ib)limi},.This low leveltorsionload

does notpresenta problem fortheend trussattachmentdesign. The torsionsbetween

40-m beam segments are self-equilibratingintheend fitting.

4.3.5 Test of l-m x 6-m (4-Bay)Beam Fabricatedby Beam Builder

This sectionincorporatesthetestdataof trussspecimen thatwas assembled by the

Beam Builder. The test was conducted on August 17, 1978. The test specimen was a 4-bay ,, ,

-_luminum truss similar to thr, hand-assembled specimen covered in Subsection 4.3. It was

instrumented with 24 strain gages and 25 displacement transducers. Truss set up for the

test was accomplished in the same manner as the hand-assembled specimen. Load was

:lpplied incrementally up to ultimate load (100%). One cap of the truss buckled resulting

in failure of the truss when the load was being increased to 110% of ultimate. The measure-

ment of the applied load plus the tare weight of the upper fixture indicates that failure _ - •

occurred at 6111 N (1374 lb) or 106% of design ultimate load. Spotwelds (total of two) ,
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I
I:

joining the diagonals to the caps at the bottom of bay No. 2 and the bottom of bay No. 3

failed below limit load (71% of ultimate). Noises noted during the test indicates that• additional spotweld failures occurred during the load excursion from limit load to failure. ,

The truss fabricated by the Beam Builder was identical to the hand-made truss in' material, dimensions and spotwelding with one exception. The caps on the Beam Builder

made truss extended 4-1/2 in. beyond the edges of the batten at the top aM bottom. The

caps on the hand-made truss were cut flush with the edges of the batten at the top and

" bottom,

It was noted, upon receipt of the truss at Grummants Plant 5 after fabrication,

.: that two of three In-line spotwelds at the Batten/cap No. 1 ]oint on the one end were

separated. After installation of the truss In the test fixture, It was determined that the

i third weld at this joint had failed. The joint was clamped using two C-clamps prior to
the application of test loads.

It was also noted that cap No. 1 of the machine-made truss was more irregular in

shape (ripples in the extrusion) than caps No. 2 and 3.

Table 4-9 Test Log - Automatically Fabricated Beam

TEST LOAD

RUN NO, % BASE (Ib) REMARKS PHOTO NO.

i I 0 LC _,D LINK & JACK DISCONNECTED (psi) X- 2 lo 85 30
3 20 215 110

- - 4 30 345 180

5 40 475 240 X

6 50 605 3O5

7 60 735 370 X

8 71 885 445 (LIMIT LOAD) X

9 2 30 LOAD LINK & JACK CONNECTED (pzi)

10 20 215 110

11 40 475 240

" _ 12 60 735 370

13 71 t185 445 (LIMIT LOAD) X

14 80 995 550 X

, 15 90 1125 565 X

16 100 1255 830 (ULTIMATE LOAD) X

° " 17 110 1385 695 X

._ , , 1Q 120 1515 760 X

19 130 1645 825 X

- - ?0 140 1775 890 X

' 21 150 1905 95E X

} 0% (POST FAILURE) X

0559-129B
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The truss fabricated automatically by the Beam Butlder was subjected to a compres-

sive load in accordance with the Test Log appearlflg on Table 4-9. The load was applied

incrementally up to limit load (71% of ultimate) and returned t_ approximately zero. Two

spotwelds (o_e at the diagonal/cap No. 1 joint at bottom of Bay No. 2 and the other at the

diagonal/cap No. t joint at bottom of Bay No. 3) were determined to have failed. These

areas were clamped using C-clamps prior to the final run to failure. The truss was loaded

incrementally to ultimate load (100%). When the load was being increased to 110%, the

truss failed as a result of buckling of the No. 2 cap in bay No. 3. The load link indicated a

load of 5911 N (1329 lb) at failure. This load plus the fixture tare weight of 200 N (45 lb)

yields a failing load of 6112 N (1374 lb) or 106% of design ultimate based on an ultimate

load of 5782 N (1300 lb). During the final run to failure, numerous noises indicating the

failure of spotwelds were heard r t the higher loads (limit to failure).

Review of the displacement gage data indicates that the truss fabricated by the Beam

Builder compressed 0.5 in. nominally at ultimate load. The maximum lateral displace-

ment at ultimate load was 2.84 in. on cap. No. 3. Lateral displacements were generally

small up to 60%. At limit load (71%), the largest lateral displacement was 0.53 in. in

cap No. 2, the cap that eventually buckled at failure. Lateral displacements on cap No. 1

were generally smaller than the displacements of cap No. 2 and 3 throughout the test,

4.3.6 Test of 1-m x 4.5-m (3-Bay) Beam Hand Fabricated

A compression test of a 1-m x 4.5-m beam (three 1.5-m bays) was tested on

19 November 1976 using the same fixtures to apply load as described in Paragraphs

4.3.4 and 4.3.5 except that there were no horizontal restraints at the Ul.,_r fixture.

The upper end of the specimen had no lateral or torsional restraint. All parts were

made by brake forming and rivetted at all Joints. The material was 2024-T3 clad alu-

minum with a thickness of 0. 041 cm. (0.016 in. ). The specimen failed at 5604 N (1260

lb); the failure mode was torsion/flexure buckling of the cap in the upper bay.
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5 - CONCLUSIONS & RECOMMENDATIONS

5.1 CONCLUSIONS

The Automatic Beam Builder was developed, fabricated, and demonstrated within the

established contract cost and schedule constraints. The ABB demonstrated the feasibility of:

• Producing lightweight (0.85 lb/ft) beams automatically within the required rate of

1 to 5 ft of completed beam per rain

• Producing structurally sound beams with an axial design load of 5538 N based on

, the Grumman photovoltalc Satellite Solar Power System design reference structure.

Flight test demonstration of the aluminum ABB's operational capability in the space

, environment should be the next major milestone. This should be preceded by a balanced

analysis and ground test program to develop the flight demonstration unit and establish the

data base required for the flight test program.

5.2 RECOMMENDATIONS

The following recommendations will lead to an orderly and cost effective flight

demonstration program:

• ABB analysis and design effort to redesign the primary and secondary structure

for launch loads and lightweight considerations

• Loads and dynamics analysis to provide the overall dynamic model and verify

the quasi-static loads of primary structure plus dynamic model of the various

subsystems to verify launch, boost, and random vibration loads

• Design of launch locks to insure post launch operational capability of Yoder mill

assembly, cross brace magazine, carriage assembly and weld clamp assembly

• System analysis and preliminary design to select and tailor flight test instru-

mentation, i.e., accelerometers, temperature sensors, strain gages, light-

weight high frequency shakers, and electro-optical systems to measure beam

straightness

• A coordinated ground test program including thermal vacuum tests, ground

vibration surveys, and water tank neutral buoyancy tests to provide preliminary
;

verification of the analysis and establish baseline data for the flight tests.

5-z/2
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